Pentagons

A while back I developed a mild obsession with pentagons (mathematical ones, not symbolistic!) It started when I discovered some beautiful (simple and to me, unknown) theorems of quadrangles, such as  Varignon’s theorem. I already came across Miquel’s pentagon theorem, and wondered what other gems I could find.

Here is what I found: Pentagons (2.4 MB PDF).

My search was on the surface a bit disappointing: pentagons as such are not widely studied. I guess it is because some more general theorems (that apply to general polygons) contain the theory, and the specifics as applied to pentagons are not so interesting.

Nevertheless, I did discover a few theorems, and the journey took me into some very interesting corners of geometry; a very rewarding experience. I started to collect these into a document, which is shared below. It’s not comprehensive or complete; there are a few gaps.

(At some stage I may return to look at this again. In particular, there are many theorems of the type “if there is n, there is n+1”, which seems to me to hint at a very general theorem which can be used to prove a bunch of specifics.)

Also, when I started, I did not realise how many of the theorems will generalise to general polygons, so the collection looks a bit silly in retrospect (kind of like listing all the properties of the number 8 that equally apply to even numbers).

Even so, what’s done is done, and can perhaps satisfy someone else’s curiosity.

Continue reading “Pentagons”

Update to Functional Equations Reference (version 1.3)

This is a substantial update of this reference document. The most important addition is the chain and substitution rules for arithmetic difference calculus (ADC). Other additions include: more properties of the discrete power function, more properties of ADC operators, definitions of analog functions, and ranges of convergence of (some) z-transforms. I also corrected some errors that were discovered since the last version.

Grab it here.