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1 Notation

1.1 Standard labeling

I use the standard notation ABCDE for a pentagon with the vertices A,
B, C, D and E. The five lines AD, BE, etc. are called the diagonals of
the pentagon. Diagonals intersect in P , Q, R, S and T , with P opposite A,
Q opposite B, etc.

The diagonals divide each vertex angle into three subangles. The three
subangles of vertex A is denoted A1, A2 and A3, and similarly for the other
vertices. The five triangles ABC, CDE, etc. are called vertex triangles;
the five triangles ABD, BCE, etc. are called edge triangles.
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Figure 1: Standard labelling of a pentagon.

1.2 Cycle notation

Cycle notation can be used as shorthand sets of expressions or equations
that apply (symmetrically) to all vertices in a set.

For example, the relation

A =
B + C

2
↺ ABCDE

is shorthand for the following five equations:
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A =
B + C

2

B =
C +D

2

C =
D + E

2

D =
E +A

2

E =
A+B

2

Because this document deals with pentagons, most of which are denoted
ABCDE, I will drop the five vertices from the notation if it is clear what
is meant. The above then simply becomes

A =
B + C

2
↺ .

In essence, it is a more systematic way of writing “etcetera”.

With this notation, we can express the fact that a pentagon is equilateral
with

AB = BC ↺,

or equiangular with
A = B ↺ .

The notation can also be used to cycle over two sets of vertices. For example,
the expression

AS = ST = TC ↺ ABCDE,PQRST

is shorthand for the following:

AS = ST = TC

BT = TP = PD

CP = PQ = TE

DQ = QR = RA

ER = RS = SB

Since we will mostly deal with the second set of vertices being the diagonal
intersections of the pentagon ABCDE, I omit the second set as well when
it is clear what is meant. The above then simply becomes

AS = ST = TC ↺

I also use the cycle symbol in sums. For example,

∑

↺ABCDE

AB = AB +BC + CD +DE + EA
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When the vertex being used is clear from the context, I will omit it. The
sum above is then simply written:

∑

↺

AB

We define the product over a cycle similarly, for example:

∏

↺

AB = AB ⋅BC ⋅ CD ⋅DE ⋅ EA

Cycle statements are equivalent when we move all vertices to the next k-th
vertex. For instance, these mean the same thing:

f(A,B,D) = g(A,C,D) ↺

f(C,D,A) = g(C,E,A) ↺

In sums and products a lot of manipulations is possible through re-arrangement.
For instance

∑

↺

AB −AC = AB −AC +BC −BD + CD − CE +DE −DA+ EA− EB

= AB − EB +BC −AC + CD −BD +DE − CE + EA−DA

=
∑

↺

AB − EB

The final use of cycle notation is to denote sets. For instance, we may say
“the lines AP ↺ are concurrent”, which simply means the lines AP , BQ,
CR, DS, and ET are all concurrent. Here we left out the two vertex sets,
as we usually do.

1.3 Area

The area of a polygon XY ⋅ ⋅ ⋅Z is denoted A (XY ⋅ ⋅ ⋅Z).

2 Five points in a plane

Five points in a plane can be connected in interesting ways to form pen-
tagons. Figure 2 shows a list of representative from 11 classes of pentagons.
We only consider proper pentagons—those pentagons with no three ver-
tices colinear, which also implies that all vertices are distinct.

Below is a rough, informal characterization of these classes. In all cases
the vertices are classified by the angle on the coloured side. The character-
ization can be used to recognise pentagons visually, but a more technical
characterization is necessary for proofs about classes of pentagons. I use
the term “hole” very loosely to mean a patch where the polygon can be
considered to overlap itself.

Class 1 Convex

Class 2 One concave vertex
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Class 3 Two adjacent concave vertices

Class 4 Two non-adjacent concave vertices

Class 5 One intersection

Class 6 One intersection, one concave vertex (opposite intersection)

Class 7 One intersection, one concave vertex (adjacent to intersection)

Class 8 One intersection, two concave vertices (has a hole)

Class 9 Two intersections

Class 10 Three intersections, one concave vertex (has a hole)

Class 11 Five intersections (has a hole)

Classes 1-4 are simple pentagons, while the remainder or complex pentagons.
Theorem 1. A pentagon (with appropriate non-degenerate conditions) can
intersect itself zero, one, two, three or five times, but not four times.

Proof. Figure 2 provides examples of pentagons that intersect themselves
zero, one, two, three and five times.

The proof that pentagons cannot intersect themselves four times is quite
technical, and requires some extra terminology. Two edges are adjacent
when they share a vertex. Two distinct points are joined by an edge if they
are the endpoints of that edge. Two points A and B are connected by a
set of edges if

(1) the set has a single edge, and it joins the points, or

(2) the set of all edges but one connects A with a third point C, and the
remaining edge joins the AC.

First note that no edge can intersect more than two other edges, for it cannot
intersect with itself or the two adjacent edges, so it can intersect with only
the other two edges.

Second, if a pentagon has four selfintersections, then not all edges can in-
tersect with only one other edge. For clearly, the maximum number of total
intersections possible when five edges have each at most one intersection is
two.

Therefor, a pentagon with four intersections must have at least one edge
with two intersections.

So let AB intersect two other edges. These two edges must be adjacent, for
if they are not, then there are six edge endpoints that needs to be connected
to form a pentagon. But at least three edges is required for this, and only
two remain.

So let the two edges be CD and DE, sharing vertex D. Then either AC
must be joined, or AE must be joined:

(1) If AC is joined, then BE must be joined, giving a pentagon with only
two intersections in total.
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(2) Instead, if AE is joined, then BC must be joined. Two cases are
possible: either AE intersects CD, or it does not.

(a) If AE intersects CD, then either BC must intersect both AE
and DE, or neither, giving either five or three total intersections.

(b) If AE does not intersect CD, then BC must intersect DE, and
no other edge. This gives a pentagon with three intersections.

Therefor, no configuration is possible that gives four points of intersection.
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Figure 2: Pentgon classification

Definition 1 (Dual of a pentagon). If ABCDE is a pentagon, then the
pentagon ACEBD is called the dual of that pentagon.

The dual pentagon is precisely the pentagon whose edges are the diagonals
of the original pentagon. The fact that pentagons have five diagonals is a
nice coincidence which makes the idea of a dual figure natural. The idea
needs modification to be applied to other polygons.

Theorem 2. If pentagon P1 is the dual of P2, then P1 is the dual of P2.

Proof. Let P1 = ABCDE. Then, since P2 is its dual, P2 = ACEBD. Then
The dual of P2 must be AEDCB, which is the same pentagon as ABCDE,
i.e. the dual of P2 is P1.
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Since the sides of a pentagon cannot intersect four times, it follows that
there is no pentagon whose diagonal segments intersect four times (because
if there were, its dual would have sides that intersect four times).

In general, the dual of a pentagon of a class can be in more than one class.
Figure 3 shows that duals of Class 2 can be Class 2 or Class 5, and Table
1 summarizes the possible dual classes for each class. (Note, the table has
been obtained experimentally, so it is possible there are some ommisions).
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E

D C

B

Figure 3: Duals

Class Possible Classes of Duals
1 11
2 2, 4, 5, 7, 9, 10
3 5
4 2, 8
5 2, 3, 7, 9
6 2
7 2, 5
8 4
9 2, 5
10 2
11 1

Table 1: Classes for Duals

It should be clear that we should be able to split classes so that the dual of
a pentagon in one class is always in just one class.

Definition 2 (Diagonal pentagon of a pentagon). The diagonal pentagon
of pentagon ABCDE is the pentagon PQRST .
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Class Possible Classes of Diagonal Pentagons
1 1
2 2, 5
3 1
4 2, 7, 9
5 7, 8, 9
6 1, 3, 6
7 2
8 2
9 5, 7, 9, 10
10 4, 7, 9
11 2, 5, 11

Table 2: Classes for Diagonal Pentagons

Theorem 3. If a pentagon is convex, it contains all the vertices of its
diagonal pentagon.

Proof. If ABCDE is convex, then so is the quadrilateral ABCE. The
diagonals of a convex quadrilateral intersect inside the quadrilateral at S.
Hence, S is inside ABCE, and hence it is inside ABCDE (since D is outside
ABCE). Thus we have

S is inside ABCDE ↺,

and so all of P ↺ is inside ABCDE.

Theorem 4. In a convex pentagon,

AR < AQ ↺ .

Corollary 5. If a pentagon is convex, so is its diagonal pentagon.

Theorem 6. The diagonal pentagon of a convex pentagon cannot have two
vertex angles that are acute and adjacent.

Proof. Consider △ARS. At most one vertex of the triangle can be obtuse.
Thus, at least one of ∠ARS and ∠ASR must be acute, and hence, at least
one of their supplements ∠QRS and ∠TSR must be obtuse. The same
applies to any pair of adjacent vertex angles of PQRST .

Corollary 7. The diagonal pentagon of a convex pentagon can have at most
two acute vertex angles.

Proof. Otherwise, two of the acute vertex angles must be adjacent, which
contradicts the theorem above.

Theorem 8. The five quadrilaterals ABCQ ↺ of a convex pentagon cannot
all be cyclic.

Proof. A+ P = 180∘ ↺, adding these we have
∑

↺
A+ P = 5 ⋅ 180∘. But

∑

↺
A =

∑

↺
P = 3 ⋅ 180∘, so ∑

↺
A+P = 6 ⋅ 180∘, which contradicts the

earlier statement.
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In fact, if ABCDE is convex non-degenerate, at most 3 of the quadrilaterals
ABCQ ↺ can be cyclic. Suppose four are cyclic (all but DEAT ). Then we
have

A+B + C +D + P +Q+R+ S = 4 ⋅ 180∘

Thus, E + T = 360. If ABCDE is convex, then PQRST must be convex,
and it follows that E = T = 180∘, which means ABCDE must have all ver-
tices in a straight line (which implies PQRST have all vertices in the same
line), which contradicts the requirement that ABCDE is non-degenerate.

The following figure suggests that it is possible for 3 such quads to be cyclic.

Figure 4: Three cyclic quadrilaterals in a pentagon.

Definition 3. Given a pentagon ABBCDE, the medial pentagon JKLMN
is the pentagon such that J bisects CD ↺.

Theorem 9. If ABCDE is a convex pentagon with medial pentagon JKLMN ,
then

A (JKLMN)

A (ABCDE)
∈
(

1

2
,
3

4

)

Theorem 10 (Similarity of Pentagons). Two pentagons ABCDE and A′B′C ′D′E′

are similar when any one of the minimum requirements in the table below
are satisfied. The number indicates the number of pairs of corresponding
vertices that should be equal, and the number of pairs of corresponding sides
and diagonals that should be proportional.

Vertices Sides Diagonals
4 3 adjacent 0
4 0 3 adjacent
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Figure 5: The triangles of Monge’s formula

3 General Pentagons

3.1 Monge, Gauss, Ptolemy

Theorem 11 (Monge’s Formula [9]). If ABCDE is a convex pentagon,
then

A (ABC)A (ADE) +A (ABE)A (ACD) = A (ABD)A (ACE) ↺

Proof. In the derivation what follows, we make use of the trigonometric
identity

sin� sin  + sin� sin(�+ � + ) = sin(�+ �) sin(� + ).

We prove Monge’s formula for the triangles with vertex A.

A (ABC)A (ADE) +A (ABE)A (ACD)

=
AB ⋅AC sinA3

2

AD ⋅AE sinA1

2
+

AB ⋅AE sinA

2

AC ⋅AD sinA2

2

=
AB ⋅AC ⋅AD ⋅AE

4
(sinA3 sinA1 + sinA sinA2)

=
AB ⋅AC ⋅AD ⋅AE

4
(sin(A2 +A3) sin(A1 +A2))

=
AB ⋅AD sin(A2 +A3)

2
⋅ AC ⋅AE sin(A1 +A2)

2
= A (ABD)A (ACE)

Theorem 12 (Monge’s Formula Vector form). Let a, b, c, and d be any
four vectors. Then

(a ∘ b)(c ∘ d) + (a ∘ d)(b ∘ c) = (a ∘ c)(b ∘ d).
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a
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d

Figure 6: Monge’s Formula Vector Form

Proof.

(a ∘ b)(c ∘ d) + (a ∘ d)(b ∘ c)
= (axby − aybx)(cxdy − cydx) + (axdy − aydx)(bxcy − bycx)

= axbycxdy − axbycydx − aybxcxdy + aybxcydx

+ axbxcydy − axbycxdy − aybxcydx + aybycxdx

= axbxcydy − axbycydx − aybxcxdy + aybycxdx

= (axcy − aycx)(bxdy − bydx)

= (a ∘ c)(b ∘ d)

The relation to the geometric version of the formula should be clear when
you notice that the area of the triangle between two vectors is given by
1

2
a ∘ b = 1

2
∣a∣∣b∣ sin �, where � is the anti-clockwise angle between the two

vectors.

Theorem 13 (Gauss’s Formula). ABCDE is a convex pentagon. Let

c1 =
∑

↺

A (ABC)

c2 =
∑

↺

A (ABC)A (BCD)

Then the the area K = A (ABCDE) of the pentagon is given by the solution
of

K2 − c1K + c2 = 0

Proof. The proof follows from Monge’s formula if we make the following
substitutions:

A (ACD) = K −A (ABC)−A (DEA)

A (ABD) = K −A (BCD)−A (DEA)

A (ACE) = K −A (ABC)−A (CDE)
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For a pentagon with all vertex triangles of equal area k = A (△ABC) ↺,

c1 = 5k

c2 = 5k2,

thus

K =
5k +

√
25k2 + 20k2

2
=

(5 +
√
5)k

2
=

√
5�k

Theorem 14 (Ptolomy’s Formula). Let RABC be the radius of the circum-
circle of triangle ABC. Then, for any pentagon ABCDE

BC

RABC

⋅ DE

RADE

+
BE

RABE

⋅ CD

RACD

=
BD

RABD

⋅ CE

RACE

↺

Proof. This follows directly from Monge’s formula by using A (XY Z) =
xyz

RXY Z

and dividing by AB ⋅AC ⋅AD ⋅AE.

3.2 Cyclic Ratio Products (alla Ceva en Melenaus)

Theorem 15. If ABCDE is a pentagram, then

∏

↺

AR =
∏

↺

AS.

Proof. Using the rule of sines, we have

AR

sin∠ASR
=

AS

sin∠ARS
↺ .

Multiplying these together, we get

∏

↺

AR

sin∠ASR
=

∏

↺

AS

sin∠ARS
,

or equivalently,
∏

↺

AR

sin∠ASR
=

∏

↺

AS

sin∠BST
.

But
∠ASR = ∠BST ↺

because they are vertically opposite angles, hence

∏

↺

AR =
∏

↺

AS

Definition 4 (Cevian). A cevian of a pentagon is a line passing through a
vertex and intersecting the opposite side of the pentagon.

Lemma 16. If AD is a cevian of △ABC with D on BC, then

CD

DB
=

AC sin∠CAD

AB sin∠BAD
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Theorem 17.A (Ceva Pentagon Theorem, Larry Hoehn). Let the five ce-
vians through a point O in the interior of a pentagon intersect the sides.
We label the intersection J = AO ∩ CD ↺. Then

∏

↺

AM

MB
= 1 (1)

Proof. Using the lemma above, we have

∏

↺

AM

MB
=

∏

↺

AO sin∠AOM

BO sin∠BOM

Or after re-arranging factors on the right

∏

↺

AM

MB
=

∏

↺

AO sin∠AOM

AO sin∠DOJ

Now vertical opposite angles are equal,

∠AOM = ∠DOJ ↺

thus
∏

↺

AM

MB
=

∏

↺

AO sin∠AOM

AO sin∠DOJ
= 1

Theorem 17.B (Ceva Pentagon Theorem, Converse). If four cevians are
concurrent in O and

∏

↺

AM

MB
= 1, (2)

then all five cevians are concurrent.

We can also use the rule of sines to get the theorem in trigonometric form.
The concurrency condition is then:

∏

↺

sin∠OAB

sin∠OBA
= 1.

Theorem 18 (Hoehn’s Theorem). For a convex pentagon ABCDE,

∏

↺

AS

TC
= 1 (3)

∏

↺

AT

SC
= 1 (4)

AS

TC
=

A (ABE)

A (ABCE)
⋅ A (BCDA)

A (BCD)
↺ (5)

Theorem 19 (Melenaus for Pentagons). If a line intersects the sides (pos-
sibly extended) CD in J ↺, then

∏

↺

CJ

JD
= −1
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Figure 7: Hoehn’s Theorem Mnemonic

3.3 Miquel

The theorems in his section are essentially based on a generalisation of
Miquel’s theorem for triangles.

Theorem 20.A. If five circles cA ↺ ABCDE intersect in a common point
O and five other points J , K, L, M , N , choose any point A on cA.

(1) Construct line AM , let it intersect cB again in B.

(2) Construct line BN , let it intersect cC again in C.

(3) Construct line CJ , let it intersect cD again in D.

(4) Construct line DK, let it intersect cE again in E.

Then AE goes through L.

Proof. We prove ALE is a straight line.

Join JO ↺. Then

(1) OLA+OMA = 180, OMA+OMB = 180, thus OLA = OMB.

(2) OMB +ONB = 180, ONB +ONC = 180, thus OLA = ONC.

(3) ONC +OJC = 180, OJC +OJD = 180, thus OLA = OJD.

(4) OJD +OKD = 180, OKD +OKE = 180, thus OLA = OKE.

(5) OKE +OLE = 180.

Thus OLA+OLE = 180, hence ALE is a straight line.

Theorem 20.B. On any pentagon ABCDE, if we mark of M on AB ↺,
and the four circles BMN , CNJ , DJK and EKL all intersect in a point
O, then circle ALM also pass through O.

Theorem 20.C. On any pentagon ABCDE, mark a point M on AB, and
choose any point O. Construct ⊙AOM , let it cut EA in L. Construct
⊙BOM , let it cut BC in N . Construct ⊙CON , let it cut CD in J . Con-
struct ⊙DOJ , let it cut DE in K.

Then ⊙EKL pass through O.
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Figure 8: Miquel’s Theorem

The last two parts are proved similarly to the first: in each case, we chase
angles around the sequence of circles until we can eventually prove LOKE
is cyclic.

We have proven that the following arrangement of figures always exist:

Definition 5. A Miquel arrangement is a pentagon ABCDE with five
points J ↺ marked on the sides, and five circles with centers OA ↺ that

∙ all intersect in a common point O, and

∙ each intersect a vertex and the two marked points on adjacent sides of
the pentagon.

The remainder of this section deals with Miquel arrangements. Theorem 20
and those that follow are easily generalised to polygons with any number of
sides.

Theorem 21. If in a Miquel arrangement OA ∈ AO, then OA ∈ AO ↺.

Theorem 22. The area of the pentagon in a Miquel arrangement is maxi-
mal when OA ∈ AO.

Proof. Let ABCDE and A′C ′D′E′ be two pentagons in Miquel arrange-
ment with the same five circles, and let OA ∈ OA. The areas of these two
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pentagons are given by

A (ABCDE) = A (JKLMN) +
∑

↺
A (ALM) (6)

A (A′B′C ′D′E′) = A (JKLMN) +
∑

↺
A (A′LM) (7)

Theorem 23. The centres OA ↺ of five circles in a Miquel arrangement
form a pentagon, and OAOBOCODOE ∼ ABCDE.

Corollary 24. If the five circles cA have equal radius, then the pentagon
ABCDE is cyclic.

Proof. Since the five circles have equal radius and they all intersect in O, it
follows that their centers are concyclic, that is the pentagonOAOBOCODOE

is concyclic, and since it is similar to ABCDE, the pentagon ABCDE too
must be concyclic.

cE
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D′
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A′

E′

E

D

C

B

L

K

J

N

M

O

A

Figure 9: Theorem 25.

Theorem 25. In the Miquel arrangement, pairs of circles intersect in points
A′ (in addition to the point O). The pentagon A′B′C ′D′E′ is inscribed in
the diagonal pentagon.

Proof. This follows easily from Miquel’s theorem for triangles. Circles OA,
OB , and OC intersect in a common point O. Since the intersection of ⊙OA
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and ⊙OB (other than O) lies on AB, and the intersection of ⊙OB and ⊙OC

(other than O) lies on BC, the intersection of ⊙OA and ⊙OC must lie on
AC. Similarly, ⊙OA ∩ ⊙OC (not O) ∈ AC ↺.

cE

cA
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cC

cD

X

E′

D′

C ′

B′

E

D

C

B

L

K

J

N

M

O

A

A′

Figure 10: Theorem 26

Theorem 26. If ABCDE and A′B′C ′D′E are two pentagons constructed
on the same five circles intersecting in a common point O, (with different
initials points A and A′), then ABCDE ∼ A′B′C ′D′E′.

Proof. By Theorem 25 AC, A′C ′, cA and cC all have a common point
which we label X. From this, it follows that ∠XAM = ∠XA′M , since
these are angles in ⊙cA suspended by chord XM . Similarly, ∠XCN =
∠XC ′N . Finally, ∠MBN = ∠MB′N . Thus ABC ∼ A′B′C ′. We can
show similarly ABC ∼ A′B′C ′ ↺. And thus, by Theorem 10, we have
ABCDE ∼ A′B′C ′D′E′.

3.4 Conics

Theorem 27. For a pentagon, we can find a unique conics that passes
through all the vertices of the pentagon.

From this, it should be clear that there exists a projective transformation
from any pentagon to a cyclic pentagon.

The following gives a method of constructing the circumconic of pentagon
ABCDE [6]:
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(1) S2 := AB ∩DE

(2) Let g be any line through S2.

(3) S1 := g ∩BC.

(4) S3 := g ∩ CD.

(5) X := S1A ∩ S3E.

Then X lies on the circumconic of ABCDE.

g

X

S3

S1

S2 A

E

D

C

B

Figure 11: Construction of a conic

Theorem 28. For a pentagon, we can find a unique conic that is tangent
to the five sides of the pentagon.

3.5 Complete Pentagons

In a complete quadrilateral, we can join three pairs of non-adjacent vertices
to form three diagonals. The midpoints of the three diagonals are lie on a
common line, the Newton-Gauss line of the quadrilateral.

Four triangles are formed if we take three sides at a time. The circum-
circles of these triangles share a common point, the Cliffort point of the
quadrilateral. The centers of these circles are concyclic; the common circle
is called the Morley circle of the quadrilateral. The Cliffort point also lies
on the Morley circle.

Theorem 29 (Grunert’s Theorem [3]). Let A′ = BC ∩DE ↺. The, let J
bisect AA′ ↺, and J ′ bisect EB ↺. Then the lines JJ ′ ↺ are concurrent,
provided that they all intersect and the dual pentagon ACEBD has non-zero
area.

Proof.

The point of concurrency is called the Grunert point of the pentagon.
This theorem is implicit in a lemma by Newton [2]. The lines JJ ′ ↺ are
the Newton-Gauss lines of the quadrilaterals EABA′.
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Figure 12: Newton-Gauss Line

X

Figure 13: Morley Circle

Theorem 30 (Newton’s Theorem [2]). Let M = AB ∩ CD ↺. Then the
Newton-Gauss line of the quadrilaterals AMDE ↺ are concurrent in the
center of the inscribed conic of the pentagon.

Theorem 31 (Morley Circle). The centers of the five Morley circles of the
quadrilaterals, formed by four sides at a time, is concyclic.

Theorem 32 (Miquel’s Pentagram Theorem). Let ABCDE be a pentagram
that self-intersects P = BD ∩ EC ↺. Then ⊙ARS ∩ ⊙BST = {S, S′} ↺,
and P ′Q′R′S′T ′ is cyclic.

Theorem 33 (Clifford Circle). Let M = AB ∩ CD ↺. Then the Clifford
points FE of AMDE ↺ are concyclic.

The common circle is called the Clifford circle of the pentagon.

3.6 The Centroid Theorem

In this section I present a theorem on general polygons by Mammana, Micale
and Pennisi [7], with some applications to pentagons.

Definition 6 (Centroid). Let xi be the position vectors of a set of n points
Pi with respect to a fixed point P . The centroid the set of points Pi is the
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E′

D′

C ′

B′

J

J ′

A′

A

E

D C

B

Figure 14: Grunert Point

point with position vector with respect to P

x̄ =
1

n

n
∑

i=1

xi.

We denote this point by C (P1P2 ⋅ ⋅ ⋅Pn).

The centroid of a polygon is the centroid of the vertex points.

It should be clear that the centroid does not depend on P or the order of
the points, so that the concept of the centroid of a polygon is unambiguous.

Theorem 34. If we partition the vertex points of polygon with n vertices
into two disjoint sets with k and n − k points each, the line through the
centroids (A and B) of the two sets lies on the centroid C of the polygon,
and

AC

CB
=

n− k

k

Proof. Let the k points of the one set be A1 ⋅ ⋅ ⋅Ak, and the points of the
other set be B1 ⋅ ⋅ ⋅Bn−k. Choose a fixed point P , and let ai be position
vectors of Ai with respect to P , and bi be position vectors of Bi with respect
to P . The centroid of the polygon is the point C with position vector

c =
1

n

[

k
∑

i=1

ai +

n−k
∑

i=1

bi

]

The centroids of the two partitions have position vectors

a =
1

k

k
∑

i=1

ai

b =
1

n− k

n−k
∑

i=1

bi
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So

nc = ka+ (n− k)b

⇒ kc− ka = (n− k)b− (n− k)c

⇒ c− a =
n− k

k
(b− c)

This means that the lines AC and BA are the same line (thus C lies on
AB), and that

AC

BA
=

∣c− a∣
∣b− c∣ =

n− k

k

Theorem 35 (Centroids of Pentagons). If ABCDE is a pentagon with
centroid O, then

(1) Let J = C (ABC) ↺ and J ′ = C (DC) ↺. Then the lines ↺ JJ ′ are
concurrent in O.

(2) Let J = C (ABCD) ↺. Then the lines JD ↺ are concurrent in O.

(3) Let J = C (AB) ↺, J ′ = C (BC) ↺, and K = C (CDE) ↺, and
K ′ = C (ADE) ↺. Then JJ ′ ∥ KK ′ ↺, and ∣JJ ′∣/∣KK ′∣ = 3/2 ↺.

(4) Let J = C (ABCD) ↺, J ′ = C (BCDE) ↺. Then JJ ′ ∥ EA ↺, and
∣JJ ′∣/∣EA∣ = 1/4 ↺.

We can generalize the theorem as follows. Let fn be an isometry invariant
function of the vertices of a n-gon.

Then the fn-centroid of a point set Xi with position vectors xi is the point
with position vector

x̄fn =

∑n
i=1

xifn(Xi)
∑n

i=1
fn(Xi)

and denoted by Cfn (X1X2 ⋅ ⋅ ⋅Xn). All position vectors are with respect to
some fixed point P .

Here are some examples of candidate functions for a pentagon ABCDE:

f5(A) = 1 ↺

f5(A) = sinA ↺

f5(A) = ∣CD∣ ↺

f5(A) = A (ABC) ↺

Theorem 36 (fn-Centroids). If we partition the vertex points of polygon
with n vertices into two disjoint sets with k and n− k points each, the line
through the fn-centroids (A and B) of the two sets lies on the f -centroid C
of the polygon, and

AC

CB
=

∑n−k
i=1

fn(Bi)
∑k

i=1
fn(Ai)
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The proof is exactly as the centroid theorem above.

If we choose fn(Xi) = 1, we get the centroid theorem above.

As an example on pentagons, choose f5(A) = ∣CD∣ ↺, and let us partition
into vertex triangles and opposite sides, so that we have for each vertex the
points

Cf5 (ABE) =
CD ⋅ a+DE ⋅ b+BC ⋅ e

CD +DE +BC

Cf5 (CD) =
EA ⋅ c+AB ⋅ d

EA+AB

Then the lines Cf5 (ABE) Cf5 (CD) ↺ are all concurrent.

4 Special Pentagons

4.1 Cyclic Pentagons

The following theorem is one of many 4 → 5-type theorems:

Theorem 37. If four perpendicular bisectors of the sides of a pentagon are
concurrent, then all five perpendicular bisectors are concurrent.

Proof. Suppose the perpendicular bisectors of AB, BC, CD, and DE are
concurrent in O, and suppose they intersect the sides in M , N , J and K.
Then △AOM ≡ △BOM (SAS), so AO = BO. With similar arguments we
have AO = BO = CO = DO = EO, so all points A, B, C, D, E lie on a
common circle with centre O. Thus EA is a chord, and its perpendicular
bisector passes through the center O.

We begin with a few obvious properties of cyclic pentagons:

Theorem 38. If ABCDE is a cyclic pentagon, then

(1) the perpendicular bisectors of the sides are concurrent,

If ABCDE is also convex, then

(1) AC ⋅BD = AB ⋅ CD +AD ⋅BC ↺,

(2) A1 = B2 = C3 ↺

Theorem 39 (The rule of sines). If ABCDE is cyclic, then

sinA

EB
=

sinB

AC
↺ .

Proof. Using rules of sines for triangle ABE, we have sinA
EB

= sinE3

AB
. Because

ABCDE is cyclic, E3 = C1, thus
sinE3

AB
= sinC1

AB
, and using rules of sines for

ABC we have sinC1

AB
= sinB

AC
.

It should be clear that the theorem is easily extended to any cyclic polygon.

Theorem 40.
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(1) If a convex pentagon is cyclic, and its diagonal pentagon are both
cyclic, the pentagon is regular.

(2) If a convex pentagon and its extended pentagram are both cyclic, then
the pentagon is regular.

Theorem 41. If ABCDE is cyclic, and J is the bimedian of quadrangle
BCDE ↺, then the pentagon JKLMN ABCDE, and JK ∥ AB.

4.2 Tangent Pentagons

Definition 7. Tangent pentagons are pentagons that can circumscribe a
circle.

Theorem 42. If four angular bisectors of a pentagon are concurrent, then
all five angular bisectors are concurrent.

Theorem 43. The angular bisectors of a tangent pentagon are concurrent.

Proof. This follows from the fact that the line bisecting the angle of two
tangents from a common point at that point passes through the circle.

Theorem 44. If four angular bisectors are concurrent, then all five angular
bisectors are concurrent.

Preposition 45. To construct a tangent pentagon with three sides AB,BC,CD
given.

(1) Construct the angular bisector b through B.

(2) Construct the angular bisector c through D.

(3) Let O = b ∩ c.

(4) Reflect the line AB through AO, call it x.

(5) Reflect the line CD through DO, call it y.

(6) Let E = x ∩ y.

4.3 Orthocentric Pentagons

Definition 8 (Orthocentric Pentagon). An ortho-centric pentagon is a pen-
tagon whose altitudes are concurrent.

Theorem 46. If four altitudes of a pentagon are concurrent, then all five
altitudes are concurrent.

Preposition 47 (Constructing a orthocentric pentagon given five concur-
rent lines that coincide with the five altitudes, and a vertex). Let the five
lines be a, b, c, d and e, concurrent in O.Let the vertex be A.

(1) Draw AB ⊥ d, with B on b.

(2) Draw BC ⊥ e, with C on c.

(3) Draw CD ⊥ a, with D on d.

(4) Draw DE ⊥ b, with E on e.

(5) Connect EA.
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Then ABCDE is a orthocentric pentagon.

Proof. All we have to do is prove c is an altitude. Since a, b, d, e are all
altitudes concurrent in O by construction, it follows that the fifth altitude
must also pass through O. But c already passes through O, so c must be
the altitude.

Preposition 48 (Constructing a orthocentric pentagon with three sides
given.). Let A, B, C, and D be the four sides given.

(1) Construct a ⊥ CD.

(2) Construct d ⊥ AB.

(3) Let O = a ∩ d.

(4) Construct e ⊥ BC.

(5) Construct DE ⊥ b, with E on e.

Then ABCDE is orthocentric. The fifth altitude is the line c = CO.

Proof. a, b, d, and e are all altitudes of the pentagon by construction, and
concurrent in O. The fifth altitude c must then also be concurrent through
O, but CO is already a line through C and O, and hence that line must be
c, the fifth altitude.

Theorem 49. If ABCDE is orthocentric with centre O and extended pen-
tagram JKLMN , than JO ⊥ BE ↺.

Proof. BO and EO are altitudes of △JBE. They intersect in O, so the
third altitude of △JBE must also pass through O. Thus, JO is an altitude,
and hence JO ⊥ BE. With the same argument we can prove all JO ⊥
BE ↺.

4.4 Mediocentric Pentagons

Definition 9 (Mediocentric). A pentagon is mediocentric when its five me-
dians are concurrent.

Theorem 50. If four medians of a pentagon are concurrent, then all five
medians are concurrent.

Proof. The proof is direct using Ceva’s Theorem, since for medians AM =
MB ↺.

An alternative vector-algebraic proof (for all polygons with odd vertex
counts) is given in [8].

Preposition 51 (To construct a mediocentric pentagon given its five medi-
ans (concurrent) and a vertex point on one of the medians). Label the point
of concurrence O, and the given vertex A, and the line that it is on a (this
is also line AO). Label the other lines b, c, d and e such that d lies between
a and b ↺, as shown in the figure. Then

(1) Construct AM ∥ b, with M on d. Construct MB ∥ a with B on b.
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(2) Construct BN ∥ c, with N on e. Construct NC ∥ b with C on c.

(3) Construct CJ ∥ d, with J on a. Construct JD ∥ c with D on d.

(4) Construct DK ∥ e, with K on b. Construct KE ∥ d with E on e.

Now connect AB, BC, CD, DE and EA. ABCDE is a mediocentric
pentagon.

Proof. AOBM is a parallelogram, so OM bisects AB, thus, d connects a
vertex D with the midpoint of the opposite site AB, so d is a median.

Similarly, by considering paralelellograms BOCN , CODK and DOEL, we
find that e, a and b are medians. These medians are concurrent (given), so it
follows that the fifth median will also be concurrent. Hence, this pentagon
is mediocentric. Since only one line can pass through C and O, it must be
the median, so c is in fact the fifth median.

db

e

c

a

E

K

D

J C
N

B

M

O

A

Figure 15: Construction of a mediocentric pentagon.

The same construction works if we label the lines differently. The next figure
shows, for example, an arrangement that yields a mediocentric pentagram.

The ideas in the above construction allows us to construct a mediocentric
pentagon given three sides. Three sides (ABCD) determine the five medians
as follows:

(1) Join A with midpoint of CD to find median a.

(2) Join D with midpoint of AB to find median d.

(3) Let O = a ∩ d.

(4) OB is median b

(5) OC is median c

(6) Join midpoint of BC to O to find median e.
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To construct E so that the pentagon is mediocentric, construct DK ∥ e,
with K on b, and finally construct KE ∥ d with E on e. To complete the
pentagon, join DE and AE.

ed

c

b

a

E
K D

J

C

N

B

M
O

A

Figure 16: Construction of a mediocentric pentagram.

Theorem 52. If ABCDE is a mediocentric pentagon with centroid X, with
medians cuting opposite sides in J ↺, then

∏

↺

AX

XJ
≤ (

√
5− 1)5

Theorem 63 give a condition for equality to hold.

4.5 Paradiagonal Pentagons

This section deals with a class of pentagons that has been studied under
various names, starting with different definitions. I use the term paradi-
agonal for the principle term, because, to me, the definition that inspired
the name seems to be the most natural, especially since it alludes to the
quadrangle analogue parallelogram.

Definition 10 (Paradiagonal Pentagon). A paradiagonal pentagon has sides
parallel to opposite diagonals, that is,

AB ∥ EC ↺ .

Definition 11 (Affine Regular). A pentagon is affine regular if an affine
transformation exists that will transform it into a regular pentagon (or,
equivalently, if it is a regular pentagon transformed under a affine trans-
formation).

Definition 12 (Golden Pentagon). A pentagon in which diagonals cut each
other in the golden ration, that is

SC

AS
= �
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Definition 13 (Equal Area Pentagon). A pentagon whose vertex triangles
all have equal area.

Theorem 53. The following statements are equivalent:

(1) A convex pentagon is paradiagonal.

(2) A convex pentagon is affine regular.

(3) A convex pentagon is golden.

(4) A convex pentagon is equal area.

Proof. (I ommit the label convex here, all the pentagons here are convex).

First, we proof that a paradiagonal pentagon has the properties required
by the other definitions. Then we prove the converse of these to show that
a pentagon of any of the other definitions is paradiagonal. These taken
together proves the theorem.

A paradiagonal pentagon is affine regular

A paradiagonal pentagon is golden

A paradiagonal pentagon is equal area. We haveA (ABE) = A (ABC), since
these triangles lie on a common base AB between parallel lines AB ∥ EC.
Similarly, we can show that other adjacent pairs of vertex triangles have
equal area. It follows that all vertex triangles have equal area.

An affine regular pentagon is paradiagonal. In a regular pentagon, it is easy
to see that all vertex triangles are congruent (SAS), hence all diagonals
are equal in length. From this it also follows that all edge triangles are
congruent. Triangles BCE and EDB are congruent, and hence have equals
area. But they also share a base (BE), so BE∣∣CD. Similarly, we can prove
for other edge and diagonal pairrs, so BE∣∣CD ↺.

Affine transformations preserve parallelism, so BE∣∣CD ↺ for a regular
pentagon transformed with any affine transformation; thus all affine regular
pentagons are paradiagonal.

A golden pentagon is paradiagonal. Through S, construct SX ∥ AD with
X on DC. From this, AS

SC
= DX

XC
. But DQ

QA
= AS

SC
, thus DX

XC
= DQ

QA
, thus

XQ ∥ CA. Hence

Theorem 54. If, in a pentagon, four diagonals are parallel to opposite
sides, then all five diagonals are parallel to opposite sides.

Proof. Suppose BC ∥ AD, CD ∥ BE, CD ∥ BE, CD ∥ BE. Then we
have A (ABC) = A (BCD), A (BCD) = A (CDE), A (CDE) = A (DEA),
A (DEA) = A (EAB). So A (ABC) = A (EAB), which means AB ∥ EC.

We may think that if four vertex triangles have equal area, all four vertex
triangles have equal area. However, this is not the case. Here is a way to
construct a counter example:

(1) Choose three points in general position, A, B, and C.
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(2) Construct line d parallel to AB through C.

(3) Mark a moveable point E on d.

(4) Construct a line e parallel to BC through A.

(5) Construct a line parallel to BE through C, and let it intersect e in D.

From triangles with the same bases and lying between the same sets of
parallel lines, it follows that four vertex triangles have equal area:

A (△EAB) = A (△ABC) = A (△BCD) = A (△CDE) ,

regardless of where we position E on d (to keep things simple, let’s always
keep it on the opposite side of e from C). It is easy to see that we can
make the area of △DEA anything we want, from zero to infinity, without
changing the areas of any of the other vertex triangles.

This construction also illustrates that we cannot weaken the theorem above
to three diagonals parallel to opposite sides, as three sides parallel to oppo-
site diagonals do not imply the other sides are parallel to opposite diagonals.

A similar construction shows that if the four edge triangles have equal area,
it does not follow that all five edge triagnles have the same area:

(1) Choose three points in general position, A, B, and D.

(2) Construct line c parallel to DB through A.

(3) Mark a movable point E on c.

(4) Construct a line e parallel to AD through B.

(5) Construct a line parallel to BE, and let it intersect e in C.

Using triangles on equal bases between the same parallel lines, we have

A (△ABD) = A (△BCE) = A (△CDA) = A (△DEB) ,

but by moving E on c we can make △EAC have any area we want, from
zero to infinity.

T

S
R

Q P

A

E

D

B

C

Figure 17: Similar triangles of a paradiagonal pentagon

Theorem 55. If ABCDE is a paradiagonal pentagon, then

(1) ERD ≡ SBC ∼ ARS ∼ ADC ↺
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T

S
R

Q P

A

E

D

B

C

Figure 18: Triangles with equal area

(2) A (AER) = A (ASB) ↺

(3) A (ABC) = A (BCD) ↺

(4) A (ARS) = A (BST ) ↺.

(5) A (ACD) = A (BDE) ↺.

Proof.

For a discussion on equal-area polygons (polygons that have vertex triangles
P1P2P3 ↺ P1 ⋅ ⋅ ⋅Pn of equal area), see [5].

Theorem 56 (Golden ratio). A paradiagonal pentagon satisfies

SC

AS
=

AC

SC
=

AC

ED
= � ↺ .

Proof. This ratio theorem is well-known for regular pentagons. Since affine
maps preserve ratio’s, the golden ratio relationship must also be satisfied for
affine regular pentagons, i.e. it must hold for paradiagonal pentagons.

Because of this theorem, paradiagonal pentagons are also called golden pen-
tagons. It also gives us a simple method to construct a paradiogonal pen-
tagon given three adjacent vertices.

Preposition 57 (To construct a paradiagonal pentagon given three adja-
cent vertices). Three adjacent vertices, A, B, and C are given.

(1) Connect AB, BC.

(2) Complete parallelogram ABCQ.

(3) On CQ, mark P such that QP/PC = PC/QC. One way to do that
is as follows [?]:

(a) Draw QX ⊥ QC, with QX = QC/2.

(b) Join XC.

(c) Mark Y on XC such that XY = XQ.
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(d) Mark P on CQ such that CP = CX.

(4) Let BP extended meet AQ extended in D.

(5) Draw AE ∥ BD, with E on CQ extended.

(6) Join CD and DE.

The pentagon ABCDE is a paradiagonal pentagon.

Proof. We need to prove that CD ∥ BE and AC ∥ ED. We do this by
using equal area arguments. CP/PQ = CP/CQ = �, but CQ = BA
(parallelogram ABCQ), thus CP/BA.

E

D

P

Y

X

QC

B A

Figure 19: Construction of a paradiagonal pentagon, given three vertices A,
B, and C.

Theorem 58. The diagonal pentagon PQRST of a paradiagonal pentagon
ABCDE is similar to it:

ABCDE ∼ PQRST

Theorem 59. Let ABCDE be a paradiagonal pentagon, then the medial
pentagon JKLMN (where J bisect CD ↺) is similar to the paradiagonal
pentagon:

JKLMN ∼ PQRST

In the more general case, when ABCDE is an arbitrary pentagon, we have
∠A = ∠J ↺, but this does not imply the figures are similar.

Theorem 60. The lines AP ↺ of a paradiagonal pentagon are concurrent,
and they bisect opposite sides CD ↺.
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Proof. We show that AP, BQ and DS are concurrent.

Let X = AB ∩DS. Then, using Ceva’s theorem in △DAB, we have

AX

XB
⋅ BT

TD
⋅ DR

RA
= 1,

so that
AX

XB
=

TD

BT
⋅ RA

DR
.

Thus, using the above and the golden ratio theorem,

AX

XB
⋅ BP

PD
⋅ DQ

DA
=

TD

BT
⋅ RA

DR
⋅ BP

PD
⋅ DQ

DA

= � ⋅ 1
�
⋅ � ⋅ 1

�

= 1

So the triplet of ratios satisfies Ceva’s formula, and hence DX = DS, AP
and BQ are concurrent. We can repeat the proof for other triplets, and
eventually establish that all five lines AP ↺ are concurrent.

To prove that the lines AP ↺ bisect opposites sides, let J = AP ∩ CD.

Now, we have the following relationships:

(1) DR
RD

= � (Theorem 56)

(2) AS
SC

= 1/� (Theorem 56)

(3) DR
RA

⋅ AS
SC

⋅ CJ
JD

= 1 (Ceva’s Theorem, since AJ , DS, CR are concurrent)

Combining these give CJ
JD

= 1, thus CJ = JD. Similar arguments prove
CJ = JD ↺.

Corollary 61. If a pentagon is paradiagonal, it is also mediocentric.

Theorem 62 (Congruence SAS). if two sides and the enclosed angle of two
paradiagonal pentagons are equal, then the two pentagons are congruent.

Theorem 63.A. Let the medians cut opposite sides in J ↺, and let AJ ↺

all intersect in X. Then

∏

↺

AX

XJ
= (

√
5− 1)5

Theorem 63.B. If ABCDE is a mediocentric pentagon with centroid X,
and

∏

↺

AX

XJ
= (

√
5− 1)5,

then the pentagon is paradiogonal.
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4.6 Equilateral Pentagons

Theorem 64. The two sub angles on the base of vertex triangles of a pen-
tagon are equal, that is

A3 = C1 ↺

Proof. The proof follows immediately from the fact that ABC ↺ are isosce-
les triangles, which have equal base angles A3 = C1.

Theorem 65 (Ptolomy’s Formula for Equilateral Pentagons). Let RABC

be the radius of the circumcircle of triangle ABC. Then, for any cyclic
pentagon ABCDE

1

RABC

⋅ 1

RADE

+
1

RABE

⋅ 1

RACD

=
1

RABD

⋅ 1

RACE

↺

Stellated

Concave

Convex

D̂ = B̂

2Â
+
B̂
=
18
0
∘

Â
=
B̂

Ĉ = 180
∘

36∘ 48∘ 60∘ 72∘ 84∘ 96∘ 108∘ 120∘Â

24∘

30∘

36∘

42∘

48∘

54∘

60∘

66∘

72∘

78∘

84∘

90∘

96∘

102∘

108∘

B̂

D̂
=
15
∘

D̂
=
30
∘

D̂
=
45
∘

D̂
=
60
∘

D̂
=
75
∘

D̂
=
90
∘

D̂
=
10
5
∘

Figure 20: Triangles with equal area
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4.7 Equiangular Pentagons

The area of a convex equiangular pentagon is a function of the lengths of
the sides alone, since we can express the c1 and c2 of Gauss’s Formula as

c1 =
sin 108∘

2

∑

↺

AB ⋅AC

c2 =
sin2 108∘

4

∑

↺

AB ⋅BC2 ⋅ CD

4.8 Brocard Pentagons

Definition 14. A Brocard Point of a pentagon is a point X such that
all angles AXB ↺ are equal. The angle is called the Brocard angle. A
pentagon with a Brocard point is called a Brocard pentagon.

Theorem 66. If a pentagon has a Brocard point, it is unique.

Proof. Suppose there are two Brocard points, X and X ′, with Brocard
angles ! and !′. If ! = !′, then X ′ must be the intersection of AX and BX,
and henceX = X ′. Suppose then that ! ∕= !′. IfX ∕= X ′, then in must lie in
one of the triangles △ABX ↺. If it lies, for instance, in triangle ABX, then
! = ∠XAB > ∠X ′AB = !′. But also, ! = ∠XBC < ∠X ′BC = !′. We
thus have both ! > !′ and ! < !′, which cannot be. Similar contradictions
are obtained if X lies in any of the triangles ABX ↺, and hence ! ∕= !′

cannot be true. Thus ! = !′, and hence X = X ′.

A

B

C

D

E

X

X ′

!′

!

!′

!

Figure 21: If a pentagon has a Brocard point, it is unique.

Theorem 67. In a Brocard pentagon, AB ↺ is tangent to ⊙XBC.

Theorem 68. Let ABCDE be a Brocard pentagon with Brocard point X,
and A′ ∕= X be any point on ⊙EAX inside ABCDE. Join EA′, and then
let B′ = AA′ ∩ ⊙ABX, C ′ = BB′ ∩ ⊙BCX, D′ = CC ′ ∩ ⊙CDX, and
E′ = DD′ ∩ ⊙DEX. Then:

(1) E′ = EA′ ∩ ⊙DEX

(2) ABCDE ∼ A′B′C ′D′E′

(3) A′EA = B′AB ↺
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(4) X ′ is also the Borcard point of A′B′C ′D′E′

A′′

B′

E

D
X

C

B

A

A′C ′

C ′

E′

Figure 22:

Proof. Theorem 26 implies parts 1 and 2.

To prove part 3: AB is tangent to ⊙EAX, and AA′ is a chord of ⊙EAX,
so ∠A′AB = ∠AEA′, and (similarly ↺).

I only prove the part 4 in the case where A′ is in △ABX.

Extend XA to meet ⊙ABX in A′′. Then,

∙ ∠B′AB = ∠A′EA (already proven, part 3 of this theorem).

∙ ∠A′EA = ∠A′XA (angles in the same segment in circle EAX on
chord A′A).

∙ ∠AXA′ = ∠AXA′′ = ∠ABA′′ (angles in the same segment in circle
ABX on chord AA′′).

Thus ∠B′AB = ∠ABA′′, and hence AB′ ∥ A′′B. So,

∙ ∠XA′B′ = ∠XA′′B (alternate angles AB′ ∥ A′′B).

∙ ∠XA′′B = ∠XAB (angles in the same segment in circle ABX on
chord XB).

Thus ∠XA′B′ = ∠XAB.

Similarly, we can show ∠XA′B′ = ∠XAB ↺. But ∠XAB ↺ are all equal
to the Brocard angle, so XA′B′ ↺ must all be equal to the Brocard angle.
Thus, X is also the Brocard point of A′B′C ′D′E′.
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These ideas can be extended to general polygons. See [1].

4.9 Classification By Subangles

Theorem 69 (Subangle Classification). If the subangles of a pentagon sat-
isfies certain relationships, the pentagon is special.

(1) If A2 = B3 = E1 ↺, the pentagon is cyclic.

(2) If A2 = C1 = D3 ↺, the pentagon is paradiagonal.

(3) If A1 = A2 = A3 ↺, the pentagon is regular.

(4) If A3 = C1 ↺, the pentagon is equilateral.

Quadrilaterals Pentagon

Parallelograms Mediocentric
Kites Orthocentric
Cyclic with two opposite angles right angles Tangent
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