Pentagons

Herman Tulleken herman.tulleken@gmail.com http://www.code-spot.co.za

April 17, 2012

Contents

1 Notation 2
1.1 Standard labeling 2
1.2 Cycle notation 2
1.3 Area 4
2 Five points in a plane 4
3 General Pentagons 10
3.1 Monge, Gauss. Ptolemy 10
3.2 Cyclic Ratio Products (alla Ceva en Melenaus) 12
3.3 Miquel 14
3.4 Conics 17
3.5 Complete Pentagons 18
3.6 The Centroid Theorem 19
4 Special Pentagons 22
4.1 Cyclic Pentagons 22
4.2 Tangent Pentagons 23
4.3 Orthocentric Pentagons 23
4.4 Mediocentric Pentagons 24
4.5 Paradiagonal Pentagons 26
4.6 Equilateral Pentagons 32
4.7 Equiangular Pentagons 33
4.8 Brocard Pentagons 33

1 Notation

1.1 Standard labeling

I use the standard notation $A B C D E$ for a pentagon with the vertices A, B, C, D and E. The five lines $A D, B E$, etc. are called the diagonals of the pentagon. Diagonals intersect in P, Q, R, S and T, with P opposite A, Q opposite B, etc.

The diagonals divide each vertex angle into three subangles. The three subangles of vertex A is denoted A_{1}, A_{2} and A_{3}, and similarly for the other vertices. The five triangles $A B C, C D E$, etc. are called vertex triangles; the five triangles $A B D, B C E$, etc. are called edge triangles.

Figure 1: Standard labelling of a pentagon.

1.2 Cycle notation

Cycle notation can be used as shorthand sets of expressions or equations that apply (symmetrically) to all vertices in a set.

For example, the relation

$$
A=\frac{B+C}{2} \circlearrowleft A B C D E
$$

is shorthand for the following five equations:

$$
\begin{aligned}
A & =\frac{B+C}{2} \\
B & =\frac{C+D}{2} \\
C & =\frac{D+E}{2} \\
D & =\frac{E+A}{2} \\
E & =\frac{A+B}{2}
\end{aligned}
$$

Because this document deals with pentagons, most of which are denoted $A B C D E$, I will drop the five vertices from the notation if it is clear what is meant. The above then simply becomes

$$
A=\frac{B+C}{2} \circlearrowleft
$$

In essence, it is a more systematic way of writing "etcetera".
With this notation, we can express the fact that a pentagon is equilateral with

$$
A B=B C \circlearrowleft
$$

or equiangular with

$$
A=B \circlearrowleft
$$

The notation can also be used to cycle over two sets of vertices. For example, the expression

$$
A S=S T=T C \circlearrowleft A B C D E, P Q R S T
$$

is shorthand for the following:

$$
\begin{gathered}
A S=S T=T C \\
B T=T P=P D \\
C P=P Q=T E \\
D Q=Q R=R A \\
E R=R S=S B
\end{gathered}
$$

Since we will mostly deal with the second set of vertices being the diagonal intersections of the pentagon $A B C D E$, I omit the second set as well when it is clear what is meant. The above then simply becomes

$$
A S=S T=T C \circlearrowleft
$$

I also use the cycle symbol in sums. For example,

$$
\sum_{\circlearrowleft A B C D E} A B=A B+B C+C D+D E+E A
$$

When the vertex being used is clear from the context, I will omit it. The sum above is then simply written:

$$
\sum_{\circlearrowleft} A B
$$

We define the product over a cycle similarly, for example:

$$
\prod_{\circlearrowleft} A B=A B \cdot B C \cdot C D \cdot D E \cdot E A
$$

Cycle statements are equivalent when we move all vertices to the next k-th vertex. For instance, these mean the same thing:

$$
\begin{aligned}
f(A, B, D) & =g(A, C, D) \circlearrowleft \\
f(C, D, A) & =g(C, E, A) \circlearrowleft
\end{aligned}
$$

In sums and products a lot of manipulations is possible through re-arrangement. For instance

$$
\begin{aligned}
\sum_{\circlearrowleft} A B-A C & =A B-A C+B C-B D+C D-C E+D E-D A+E A-E B \\
& =A B-E B+B C-A C+C D-B D+D E-C E+E A-D A \\
& =\sum_{\circlearrowleft} A B-E B
\end{aligned}
$$

The final use of cycle notation is to denote sets. For instance, we may say "the lines $A P \circlearrowleft$ are concurrent", which simply means the lines $A P, B Q$, $C R, D S$, and $E T$ are all concurrent. Here we left out the two vertex sets, as we usually do.

1.3 Area

The area of a polygon $X Y \cdots Z$ is denoted $\mathcal{A}(X Y \cdots Z)$.

2 Five points in a plane

Five points in a plane can be connected in interesting ways to form pentagons. Figure 2 shows a list of representative from 11 classes of pentagons. We only consider proper pentagons - those pentagons with no three vertices colinear, which also implies that all vertices are distinct.

Below is a rough, informal characterization of these classes. In all cases the vertices are classified by the angle on the coloured side. The characterization can be used to recognise pentagons visually, but a more technical characterization is necessary for proofs about classes of pentagons. I use the term "hole" very loosely to mean a patch where the polygon can be considered to overlap itself.

Class 1 Convex
Class 2 One concave vertex

Class 3 Two adjacent concave vertices
Class 4 Two non-adjacent concave vertices
Class 5 One intersection
Class 6 One intersection, one concave vertex (opposite intersection)
Class 7 One intersection, one concave vertex (adjacent to intersection)
Class 8 One intersection, two concave vertices (has a hole)
Class 9 Two intersections
Class 10 Three intersections, one concave vertex (has a hole)
Class 11 Five intersections (has a hole)
Classes 1-4 are simple pentagons, while the remainder or complex pentagons. Theorem 1. A pentagon (with appropriate non-degenerate conditions) can intersect itself zero, one, two, three or five times, but not four times.

Proof. Figure 2 provides examples of pentagons that intersect themselves zero, one, two, three and five times.

The proof that pentagons cannot intersect themselves four times is quite technical, and requires some extra terminology. Two edges are adjacent when they share a vertex. Two distinct points are joined by an edge if they are the endpoints of that edge. Two points A and B are connected by a set of edges if
(1) the set has a single edge, and it joins the points, or
(2) the set of all edges but one connects A with a third point C, and the remaining edge joins the $A C$.

First note that no edge can intersect more than two other edges, for it cannot intersect with itself or the two adjacent edges, so it can intersect with only the other two edges.
Second, if a pentagon has four selfintersections, then not all edges can intersect with only one other edge. For clearly, the maximum number of total intersections possible when five edges have each at most one intersection is two.

Therefor, a pentagon with four intersections must have at least one edge with two intersections.

So let $A B$ intersect two other edges. These two edges must be adjacent, for if they are not, then there are six edge endpoints that needs to be connected to form a pentagon. But at least three edges is required for this, and only two remain.

So let the two edges be $C D$ and $D E$, sharing vertex D. Then either $A C$ must be joined, or $A E$ must be joined:
(1) If $A C$ is joined, then $B E$ must be joined, giving a pentagon with only two intersections in total.
(2) Instead, if $A E$ is joined, then $B C$ must be joined. Two cases are possible: either $A E$ intersects $C D$, or it does not.
(a) If $A E$ intersects $C D$, then either $B C$ must intersect both $A E$ and $D E$, or neither, giving either five or three total intersections.
(b) If $A E$ does not intersect $C D$, then $B C$ must intersect $D E$, and no other edge. This gives a pentagon with three intersections.

Therefor, no configuration is possible that gives four points of intersection.

Figure 2: Pentgon classification
Definition 1 (Dual of a pentagon). If $A B C D E$ is a pentagon, then the pentagon $A C E B D$ is called the dual of that pentagon.

The dual pentagon is precisely the pentagon whose edges are the diagonals of the original pentagon. The fact that pentagons have five diagonals is a nice coincidence which makes the idea of a dual figure natural. The idea needs modification to be applied to other polygons.

Theorem 2. If pentagon \mathcal{P}_{1} is the dual of \mathcal{P}_{2}, then \mathcal{P}_{1} is the dual of \mathcal{P}_{2}.
Proof. Let $\mathcal{P}_{1}=A B C D E$. Then, since \mathcal{P}_{2} is its dual, $\mathcal{P}_{2}=A C E B D$. Then The dual of \mathcal{P}_{2} must be $A E D C B$, which is the same pentagon as $A B C D E$, i.e. the dual of \mathcal{P}_{2} is \mathcal{P}_{1}.

Since the sides of a pentagon cannot intersect four times, it follows that there is no pentagon whose diagonal segments intersect four times (because if there were, its dual would have sides that intersect four times).

In general, the dual of a pentagon of a class can be in more than one class. Figure 3 shows that duals of Class 2 can be Class 2 or Class 5, and Table 1 summarizes the possible dual classes for each class. (Note, the table has been obtained experimentally, so it is possible there are some ommisions).

Figure 3: Duals

Class	Possible Classes of Duals
1	11
2	$2,4,5,7,9,10$
3	5
4	2,8
5	$2,3,7,9$
6	2
7	2,5
8	4
9	2,5
10	2
11	1

Table 1: Classes for Duals
It should be clear that we should be able to split classes so that the dual of a pentagon in one class is always in just one class.

Definition 2 (Diagonal pentagon of a pentagon). The diagonal pentagon of pentagon $A B C D E$ is the pentagon $P Q R S T$.

Class	Possible Classes of Diagonal Pentagons
1	1
2	2,5
3	1
4	$2,7,9$
5	$7,8,9$
6	$1,3,6$
7	2
8	2
9	$5,7,9,10$
10	$4,7,9$
11	$2,5,11$

Table 2: Classes for Diagonal Pentagons

Theorem 3. If a pentagon is convex, it contains all the vertices of its diagonal pentagon.

Proof. If $A B C D E$ is convex, then so is the quadrilateral $A B C E$. The diagonals of a convex quadrilateral intersect inside the quadrilateral at S. Hence, S is inside $A B C E$, and hence it is inside $A B C D E$ (since D is outside $A B C E)$. Thus we have

$$
S \text { is inside } A B C D E \circlearrowleft
$$

and so all of $P \circlearrowleft$ is inside $A B C D E$.
Theorem 4. In a convex pentagon,

$$
A R<A Q \circlearrowleft
$$

Corollary 5. If a pentagon is convex, so is its diagonal pentagon.
Theorem 6. The diagonal pentagon of a convex pentagon cannot have two vertex angles that are acute and adjacent.

Proof. Consider $\triangle A R S$. At most one vertex of the triangle can be obtuse. Thus, at least one of $\angle A R S$ and $\angle A S R$ must be acute, and hence, at least one of their supplements $\angle Q R S$ and $\angle T S R$ must be obtuse. The same applies to any pair of adjacent vertex angles of $P Q R S T$.

Corollary 7. The diagonal pentagon of a convex pentagon can have at most two acute vertex angles.

Proof. Otherwise, two of the acute vertex angles must be adjacent, which contradicts the theorem above.

Theorem 8. The five quadrilaterals $A B C Q \circlearrowleft$ of a convex pentagon cannot all be cyclic.

Proof. $A+P=180^{\circ} \circlearrowleft$, adding these we have $\sum{ }_{\circlearrowleft} A+P=5 \cdot 180^{\circ}$. But $\sum_{\circlearrowleft} A=\sum_{\circlearrowleft} P=3 \cdot 180^{\circ}$, so $\sum_{\circlearrowleft} A+P=6 \cdot 180^{\circ}$, which contradicts the earlier statement.

In fact, if $A B C D E$ is convex non-degenerate, at most 3 of the quadrilaterals $A B C Q \circlearrowleft$ can be cyclic. Suppose four are cyclic (all but $D E A T$). Then we have

$$
A+B+C+D+P+Q+R+S=4 \cdot 180^{\circ}
$$

Thus, $E+T=360$. If $A B C D E$ is convex, then $P Q R S T$ must be convex, and it follows that $E=T=180^{\circ}$, which means $A B C D E$ must have all vertices in a straight line (which implies $P Q R S T$ have all vertices in the same line), which contradicts the requirement that $A B C D E$ is non-degenerate.

The following figure suggests that it is possible for 3 such quads to be cyclic.

Figure 4: Three cyclic quadrilaterals in a pentagon.
Definition 3. Given a pentagon $A B B C D E$, the medial pentagon $J K L M N$ is the pentagon such that J bisects $C D \circlearrowleft$.

Theorem 9. If $A B C D E$ is a convex pentagon with medial pentagon JKLMN, then

$$
\frac{\mathcal{A}(J K L M N)}{\mathcal{A}(A B C D E)} \in\left(\frac{1}{2}, \frac{3}{4}\right)
$$

Theorem 10 (Similarity of Pentagons). Two pentagons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ are similar when any one of the minimum requirements in the table below are satisfied. The number indicates the number of pairs of corresponding vertices that should be equal, and the number of pairs of corresponding sides and diagonals that should be proportional.

Vertices	Sides	Diagonals
4	3 adjacent	0
4	0	3 adjacent

Figure 5: The triangles of Monge's formula

3 General Pentagons

3.1 Monge, Gauss, Ptolemy

Theorem 11 (Monge's Formula [9]). If $A B C D E$ is a convex pentagon, then

$$
\mathcal{A}(A B C) \mathcal{A}(A D E)+\mathcal{A}(A B E) \mathcal{A}(A C D)=\mathcal{A}(A B D) \mathcal{A}(A C E) \circlearrowleft
$$

Proof. In the derivation what follows, we make use of the trigonometric identity

$$
\sin \alpha \sin \gamma+\sin \beta \sin (\alpha+\beta+\gamma)=\sin (\alpha+\beta) \sin (\beta+\gamma)
$$

We prove Monge's formula for the triangles with vertex A.

$$
\begin{aligned}
& \mathcal{A}(A B C) \mathcal{A}(A D E)+\mathcal{A}(A B E) \mathcal{A}(A C D) \\
& =\frac{A B \cdot A C \sin A_{3}}{2} \frac{A D \cdot A E \sin A_{1}}{2}+\frac{A B \cdot A E \sin A}{2} \frac{A C \cdot A D \sin A_{2}}{2} \\
& =\frac{A B \cdot A C \cdot A D \cdot A E}{4}\left(\sin A_{3} \sin A_{1}+\sin A \sin A_{2}\right) \\
& =\frac{A B \cdot A C \cdot A D \cdot A E}{4}\left(\sin \left(A_{2}+A_{3}\right) \sin \left(A_{1}+A_{2}\right)\right) \\
& =\frac{A B \cdot A D \sin \left(A_{2}+A_{3}\right)}{2} \cdot \frac{A C \cdot A E \sin \left(A_{1}+A_{2}\right)}{2} \\
& =\mathcal{A}(A B D) \mathcal{A}(A C E)
\end{aligned}
$$

Theorem 12 (Monge's Formula Vector form). Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} be any four vectors. Then

$$
(\boldsymbol{a} \circ \boldsymbol{b})(\boldsymbol{c} \circ \boldsymbol{d})+(\boldsymbol{a} \circ \boldsymbol{d})(\boldsymbol{b} \circ \boldsymbol{c})=(\boldsymbol{a} \circ \boldsymbol{c})(\boldsymbol{b} \circ \boldsymbol{d}) .
$$

Figure 6: Monge's Formula Vector Form

Proof.

$$
\begin{aligned}
(\boldsymbol{a} \circ \boldsymbol{b})(\boldsymbol{c} \circ \boldsymbol{d})+ & (\boldsymbol{a} \circ \boldsymbol{d})(\boldsymbol{b} \circ \boldsymbol{c}) \\
= & \left(a_{x} b_{y}-a_{y} b_{x}\right)\left(c_{x} d_{y}-c_{y} d_{x}\right)+\left(a_{x} d_{y}-a_{y} d_{x}\right)\left(b_{x} c_{y}-b_{y} c_{x}\right) \\
= & a_{x} b_{y} c_{x} d_{y}-a_{x} b_{y} c_{y} d_{x}-a_{y} b_{x} c_{x} d_{y}+a_{y} b_{x} c_{y} d_{x} \\
& \quad+a_{x} b_{x} c_{y} d_{y}-a_{x} b_{y} c_{x} d_{y}-a_{y} b_{x} c_{y} d_{x}+a_{y} b_{y} c_{x} d_{x} \\
= & a_{x} b_{x} c_{y} d_{y}-a_{x} b_{y} c_{y} d_{x}-a_{y} b_{x} c_{x} d_{y}+a_{y} b_{y} c_{x} d_{x} \\
= & \left(a_{x} c_{y}-a_{y} c_{x}\right)\left(b_{x} d_{y}-b_{y} d_{x}\right) \\
= & (\boldsymbol{a} \circ \boldsymbol{c})(\boldsymbol{b} \circ \boldsymbol{d})
\end{aligned}
$$

The relation to the geometric version of the formula should be clear when you notice that the area of the triangle between two vectors is given by $\frac{1}{2} \boldsymbol{a} \circ \boldsymbol{b}=\frac{1}{2}|\boldsymbol{a}||\boldsymbol{b}| \sin \theta$, where θ is the anti-clockwise angle between the two vectors.

Theorem 13 (Gauss's Formula). $A B C D E$ is a convex pentagon. Let

$$
\begin{aligned}
& c_{1}=\sum_{\circlearrowleft} \mathcal{A}(A B C) \\
& c_{2}=\sum_{\circlearrowleft} \mathcal{A}(A B C) \mathcal{A}(B C D)
\end{aligned}
$$

Then the the area $K=\mathcal{A}(A B C D E)$ of the pentagon is given by the solution of

$$
K^{2}-c_{1} K+c_{2}=0
$$

Proof. The proof follows from Monge's formula if we make the following substitutions:

$$
\begin{aligned}
& \mathcal{A}(A C D)=K-\mathcal{A}(A B C)-\mathcal{A}(D E A) \\
& \mathcal{A}(A B D)=K-\mathcal{A}(B C D)-\mathcal{A}(D E A) \\
& \mathcal{A}(A C E)=K-\mathcal{A}(A B C)-\mathcal{A}(C D E)
\end{aligned}
$$

For a pentagon with all vertex triangles of equal area $k=\mathcal{A}(\triangle A B C) \circlearrowleft$,

$$
\begin{aligned}
& c_{1}=5 k \\
& c_{2}=5 k^{2},
\end{aligned}
$$

thus

$$
K=\frac{5 k+\sqrt{25 k^{2}+20 k^{2}}}{2}=\frac{(5+\sqrt{5}) k}{2}=\sqrt{5} \phi k
$$

Theorem 14 (Ptolomy's Formula). Let $R_{A B C}$ be the radius of the circumcircle of triangle $A B C$. Then, for any pentagon $A B C D E$

$$
\frac{B C}{R_{A B C}} \cdot \frac{D E}{R_{A D E}}+\frac{B E}{R_{A B E}} \cdot \frac{C D}{R_{A C D}}=\frac{B D}{R_{A B D}} \cdot \frac{C E}{R_{A C E}} \circlearrowleft
$$

Proof. This follows directly from Monge's formula by using $\mathcal{A}(X Y Z)=$ $\frac{x y z}{R_{X Y Z}}$ and dividing by $A B \cdot A C \cdot A D \cdot A E$.

3.2 Cyclic Ratio Products (alla Ceva en Melenaus)

Theorem 15. If $A B C D E$ is a pentagram, then

$$
\prod_{\circlearrowleft} A R=\prod_{\circlearrowleft} A S
$$

Proof. Using the rule of sines, we have

$$
\frac{A R}{\sin \angle A S R}=\frac{A S}{\sin \angle A R S} \circlearrowleft
$$

Multiplying these together, we get

$$
\prod_{0} \frac{A R}{\sin \angle A S R}=\prod_{0} \frac{A S}{\sin \angle A R S}
$$

or equivalently,

$$
\prod_{\circlearrowleft} \frac{A R}{\sin \angle A S R}=\prod_{0} \frac{A S}{\sin \angle B S T}
$$

But

$$
\angle A S R=\angle B S T \circlearrowleft
$$

because they are vertically opposite angles, hence

$$
\prod_{\circlearrowleft} A R=\prod_{\circlearrowleft} A S
$$

Definition 4 (Cevian). A cevian of a pentagon is a line passing through a vertex and intersecting the opposite side of the pentagon.

Lemma 16. If $A D$ is a cevian of $\triangle A B C$ with D on $B C$, then

$$
\frac{C D}{D B}=\frac{A C \sin \angle C A D}{A B \sin \angle B A D}
$$

Theorem 17.A (Ceva Pentagon Theorem, Larry Hoehn). Let the five cevians through a point O in the interior of a pentagon intersect the sides. We label the intersection $J=A O \cap C D \circlearrowleft$. Then

$$
\begin{equation*}
\prod_{0} \frac{A M}{M B}=1 \tag{1}
\end{equation*}
$$

Proof. Using the lemma above, we have

$$
\prod_{0} \frac{A M}{M B}=\prod_{0} \frac{A O \sin \angle A O M}{B O \sin \angle B O M}
$$

Or after re-arranging factors on the right

$$
\prod_{\circlearrowleft} \frac{A M}{M B}=\prod_{\circlearrowleft} \frac{A O \sin \angle A O M}{A O \sin \angle D O J}
$$

Now vertical opposite angles are equal,

$$
\angle A O M=\angle D O J \circlearrowleft
$$

thus

$$
\prod_{0} \frac{A M}{M B}=\prod_{\circlearrowleft} \frac{A O \sin \angle A O M}{A O \sin \angle D O J}=1
$$

Theorem 17.B (Ceva Pentagon Theorem, Converse). If four cevians are concurrent in O and

$$
\begin{equation*}
\prod_{0} \frac{A M}{M B}=1 \tag{2}
\end{equation*}
$$

then all five cevians are concurrent.
We can also use the rule of sines to get the theorem in trigonometric form. The concurrency condition is then:

$$
\prod_{\circlearrowleft} \frac{\sin \angle O A B}{\sin \angle O B A}=1
$$

Theorem 18 (Hoehn's Theorem). For a convex pentagon $A B C D E$,

$$
\begin{align*}
\prod_{\circlearrowleft} \frac{A S}{T C} & =1 \tag{3}\\
\prod_{O} \frac{A T}{S C} & =1 \tag{4}\\
\frac{A S}{T C} & =\frac{\mathcal{A}(A B E)}{\mathcal{A}(A B C E)} \cdot \frac{\mathcal{A}(B C D A)}{\mathcal{A}(B C D)} \tag{5}
\end{align*}
$$

Theorem 19 (Melenaus for Pentagons). If a line intersects the sides (possibly extended) $C D$ in $J \circlearrowleft$, then

$$
\prod_{\circlearrowleft} \frac{C J}{J D}=-1
$$

Figure 7: Hoehn's Theorem Mnemonic

3.3 Miquel

The theorems in his section are essentially based on a generalisation of Miquel's theorem for triangles.
Theorem 20.A. If five circles $c_{A} \circlearrowleft A B C D E$ intersect in a common point O and five other points J, K, L, M, N, choose any point A on c_{A}.
(1) Construct line $A M$, let it intersect c_{B} again in B.
(2) Construct line $B N$, let it intersect c_{C} again in C.
(3) Construct line $C J$, let it intersect c_{D} again in D.
(4) Construct line $D K$, let it intersect c_{E} again in E.

Then AE goes through L.

Proof. We prove $A L E$ is a straight line.
Join JO \circlearrowleft. Then
(1) $O L A+O M A=180, O M A+O M B=180$, thus $O L A=O M B$.
(2) $O M B+O N B=180, O N B+O N C=180$, thus $O L A=O N C$.
(3) $O N C+O J C=180, O J C+O J D=180$, thus $O L A=O J D$.
(4) $O J D+O K D=180, O K D+O K E=180$, thus $O L A=O K E$.
(5) $O K E+O L E=180$.

Thus $O L A+O L E=180$, hence $A L E$ is a straight line.
Theorem 20.B. On any pentagon $A B C D E$, if we mark of M on $A B \circlearrowleft$, and the four circles BMN, CNJ, DJK and EKL all intersect in a point O, then circle ALM also pass through O.
Theorem 20.C. On any pentagon $A B C D E$, mark a point M on $A B$, and choose any point O. Construct $\odot A O M$, let it cut EA in L. Construct $\odot B O M$, let it cut $B C$ in N. Construct $\odot C O N$, let it cut $C D$ in J. Construct $\odot D O J$, let it cut $D E$ in K.

Then $\odot E K L$ pass through O.

Figure 8: Miquel's Theorem

The last two parts are proved similarly to the first: in each case, we chase angles around the sequence of circles until we can eventually prove $L O K E$ is cyclic.

We have proven that the following arrangement of figures always exist:
Definition 5. A Miquel arrangement is a pentagon $A B C D E$ with five points $J \circlearrowleft$ marked on the sides, and five circles with centers $O_{A} \circlearrowleft$ that

- all intersect in a common point O, and
- each intersect a vertex and the two marked points on adjacent sides of the pentagon.

The remainder of this section deals with Miquel arrangements. Theorem 20 and those that follow are easily generalised to polygons with any number of sides.

Theorem 21. If in a Miquel arrangement $O_{A} \in A O$, then $O_{A} \in A O \circlearrowleft$.
Theorem 22. The area of the pentagon in a Miquel arrangement is maximal when $O_{A} \in A O$.

Proof. Let $A B C D E$ and $A^{\prime} C^{\prime} D^{\prime} E^{\prime}$ be two pentagons in Miquel arrangement with the same five circles, and let $O_{A} \in O A$. The areas of these two
pentagons are given by

$$
\begin{align*}
\mathcal{A}(A B C D E) & =\mathcal{A}(J K L M N)+\sum_{o} \mathcal{A}(A L M) \tag{6}\\
\mathcal{A}\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right) & =\mathcal{A}(J K L M N)+\sum_{\circlearrowleft} \mathcal{A}\left(A^{\prime} L M\right) \tag{7}
\end{align*}
$$

Theorem 23. The centres $O_{A} \circlearrowleft$ of five circles in a Miquel arrangement form a pentagon, and $O_{A} O_{B} O_{C} O_{D} O_{E} \sim A B C D E$.

Corollary 24. If the five circles c_{A} have equal radius, then the pentagon ABCDE is cyclic.

Proof. Since the five circles have equal radius and they all intersect in O, it follows that their centers are concyclic, that is the pentagon $O_{A} O_{B} O_{C} O_{D} O_{E}$ is concyclic, and since it is similar to $A B C D E$, the pentagon $A B C D E$ too must be concyclic.

Figure 9: Theorem 25
Theorem 25. In the Miquel arrangement, pairs of circles intersect in points A^{\prime} (in addition to the point O). The pentagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is inscribed in the diagonal pentagon.

Proof. This follows easily from Miquel's theorem for triangles. Circles O_{A}, O_{B}, and O_{C} intersect in a common point O. Since the intersection of $\odot O_{A}$
and $\odot O_{B}$ (other than O) lies on $A B$, and the intersection of $\odot O_{B}$ and $\odot O_{C}$ (other than O) lies on $B C$, the intersection of $\odot O_{A}$ and $\odot O_{C}$ must lie on $A C$. Similarly, $\odot O_{A} \cap \odot O_{C}(\operatorname{not} O) \in A C \circlearrowleft$.

Figure 10: Theorem 26
Theorem 26. If $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E$ are two pentagons constructed on the same five circles intersecting in a common point O, (with different initials points A and A^{\prime}), then $A B C D E \sim A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

Proof. By Theorem $25 A C, A^{\prime} C^{\prime}, c_{A}$ and c_{C} all have a common point which we label X. From this, it follows that $\angle X A M=\angle X A^{\prime} M$, since these are angles in $\odot c_{A}$ suspended by chord $X M$. Similarly, $\angle X C N=$ $\angle X C^{\prime} N$. Finally, $\angle M B N=\angle M B^{\prime} N$. Thus $A B C \sim A^{\prime} B^{\prime} C^{\prime}$. We can show similarly $A B C \sim A^{\prime} B^{\prime} C^{\prime} \circlearrowleft$. And thus, by Theorem 10, we have $A B C D E \sim A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

3.4 Conics

Theorem 27. For a pentagon, we can find a unique conics that passes through all the vertices of the pentagon.

From this, it should be clear that there exists a projective transformation from any pentagon to a cyclic pentagon.

The following gives a method of constructing the circumconic of pentagon $A B C D E$ [6]:
(1) $S_{2}:=A B \cap D E$
(2) Let g be any line through S_{2}.
(3) $S_{1}:=g \cap B C$.
(4) $S_{3}:=g \cap C D$.
(5) $X:=S_{1} A \cap S_{3} E$.

Then X lies on the circumconic of $A B C D E$.

Figure 11: Construction of a conic

Theorem 28. For a pentagon, we can find a unique conic that is tangent to the five sides of the pentagon.

3.5 Complete Pentagons

In a complete quadrilateral, we can join three pairs of non-adjacent vertices to form three diagonals. The midpoints of the three diagonals are lie on a common line, the Newton-Gauss line of the quadrilateral.

Four triangles are formed if we take three sides at a time. The circumcircles of these triangles share a common point, the Cliffort point of the quadrilateral. The centers of these circles are concyclic; the common circle is called the Morley circle of the quadrilateral. The Cliffort point also lies on the Morley circle.

Theorem 29 (Grunert's Theorem [3]). Let $A^{\prime}=B C \cap D E \circlearrowleft$. The, let J bisect $A A^{\prime} \circlearrowleft$, and J^{\prime} bisect $E B \circlearrowleft$. Then the lines $J J^{\prime} \circlearrowleft$ are concurrent, provided that they all intersect and the dual pentagon $A C E B D$ has non-zero area.

Proof.

The point of concurrency is called the Grunert point of the pentagon. This theorem is implicit in a lemma by Newton [2]. The lines $J J^{\prime} \circlearrowleft$ are the Newton-Gauss lines of the quadrilaterals $E A B A^{\prime}$.

Figure 12: Newton-Gauss Line

Figure 13: Morley Circle

Theorem 30 (Newton's Theorem [2]). Let $M=A B \cap C D \circlearrowleft$. Then the Newton-Gauss line of the quadrilaterals AMDE \circlearrowleft are concurrent in the center of the inscribed conic of the pentagon.

Theorem 31 (Morley Circle). The centers of the five Morley circles of the quadrilaterals, formed by four sides at a time, is concyclic.

Theorem 32 (Miquel's Pentagram Theorem). Let $A B C D E$ be a pentagram that self-intersects $P=B D \cap E C \circlearrowleft$. Then $\odot A R S \cap \odot B S T=\left\{S, S^{\prime}\right\} \circlearrowleft$, and $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ is cyclic.

Theorem 33 (Clifford Circle). Let $M=A B \cap C D \circlearrowleft$. Then the Clifford points F_{E} of AMDE \circlearrowleft are concyclic.

The common circle is called the Clifford circle of the pentagon.

3.6 The Centroid Theorem

In this section I present a theorem on general polygons by Mammana, Micale and Pennisi [7, with some applications to pentagons.

Definition 6 (Centroid). Let \boldsymbol{x}_{i} be the position vectors of a set of n points P_{i} with respect to a fixed point P. The centroid the set of points P_{i} is the

Figure 14: Grunert Point
point with position vector with respect to P

$$
\overline{\boldsymbol{x}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} .
$$

We denote this point by $\mathcal{C}\left(P_{1} P_{2} \cdots P_{n}\right)$.
The centroid of a polygon is the centroid of the vertex points.
It should be clear that the centroid does not depend on P or the order of the points, so that the concept of the centroid of a polygon is unambiguous.

Theorem 34. If we partition the vertex points of polygon with n vertices into two disjoint sets with k and $n-k$ points each, the line through the centroids (A and B) of the two sets lies on the centroid C of the polygon, and

$$
\frac{A C}{C B}=\frac{n-k}{k}
$$

Proof. Let the k points of the one set be $A_{1} \cdots A_{k}$, and the points of the other set be $B_{1} \cdots B_{n-k}$. Choose a fixed point P, and let \boldsymbol{a}_{i} be position vectors of A_{i} with respect to P, and \boldsymbol{b}_{i} be position vectors of B_{i} with respect to P. The centroid of the polygon is the point C with position vector

$$
\boldsymbol{c}=\frac{1}{n}\left[\sum_{i=1}^{k} \boldsymbol{a}_{i}+\sum_{i=1}^{n-k} \boldsymbol{b}_{i}\right]
$$

The centroids of the two partitions have position vectors

$$
\begin{aligned}
\boldsymbol{a} & =\frac{1}{k} \sum_{i=1}^{k} \boldsymbol{a}_{i} \\
\boldsymbol{b} & =\frac{1}{n-k} \sum_{i=1}^{n-k} \boldsymbol{b}_{i}
\end{aligned}
$$

So

$$
\begin{aligned}
& n \boldsymbol{c}=k \boldsymbol{a}+(n-k) \boldsymbol{b} \\
\Rightarrow & k \boldsymbol{c}-k \boldsymbol{a}=(n-k) \boldsymbol{b}-(n-k) \boldsymbol{c} \\
\Rightarrow & \boldsymbol{c}-\boldsymbol{a}=\frac{n-k}{k}(\boldsymbol{b}-\boldsymbol{c})
\end{aligned}
$$

This means that the lines $A C$ and $B A$ are the same line (thus C lies on $A B)$, and that

$$
\frac{A C}{B A}=\frac{|\boldsymbol{c}-\boldsymbol{a}|}{|\boldsymbol{b}-\boldsymbol{c}|}=\frac{n-k}{k}
$$

Theorem 35 (Centroids of Pentagons). If $A B C D E$ is a pentagon with centroid O, then
(1) Let $J=\mathcal{C}(A B C) \circlearrowleft$ and $J^{\prime}=\mathcal{C}(D C) \circlearrowleft$. Then the lines $\circlearrowleft J J^{\prime}$ are concurrent in O.
(2) Let $J=\mathcal{C}(A B C D) \circlearrowleft$. Then the lines $J D \circlearrowleft$ are concurrent in O.
(3) Let $J=\mathcal{C}(A B) \circlearrowleft, J^{\prime}=\mathcal{C}(B C) \circlearrowleft$, and $K=\mathcal{C}(C D E) \circlearrowleft$, and $K^{\prime}=\mathcal{C}(A D E) \circlearrowleft$. Then $J J^{\prime} \| K K^{\prime} \circlearrowleft$, and $\left|J J^{\prime}\right| /\left|K K^{\prime}\right|=3 / 2 \circlearrowleft$.
(4) Let $J=\mathcal{C}(A B C D) \circlearrowleft, J^{\prime}=\mathcal{C}(B C D E) \circlearrowleft$. Then $J J^{\prime} \| E A \circlearrowleft$, and $\left|J J^{\prime}\right| /|E A|=1 / 4 \circlearrowleft$ 。

We can generalize the theorem as follows. Let f_{n} be an isometry invariant function of the vertices of a n-gon.
Then the f_{n}-centroid of a point set X_{i} with position vectors \boldsymbol{x}_{i} is the point with position vector

$$
\overline{\boldsymbol{x}}_{f_{n}}=\frac{\sum_{i=1}^{n} \boldsymbol{x}_{i} f_{n}\left(X_{i}\right)}{\sum_{i=1}^{n} f_{n}\left(X_{i}\right)}
$$

and denoted by $\mathcal{C}_{f_{n}}\left(X_{1} X_{2} \cdots X_{n}\right)$. All position vectors are with respect to some fixed point P.

Here are some examples of candidate functions for a pentagon $A B C D E$:

$$
\begin{align*}
& f_{5}(A)=1 \circlearrowleft \\
& f_{5}(A)=\sin A \circlearrowleft \\
& f_{5}(A)=|C D| \circlearrowleft \\
& f_{5}(A)=\mathcal{A}(A B C)
\end{align*}
$$

Theorem 36 (f_{n}-Centroids). If we partition the vertex points of polygon with n vertices into two disjoint sets with k and $n-k$ points each, the line through the f_{n}-centroids (A and B) of the two sets lies on the f-centroid C of the polygon, and

$$
\frac{A C}{C B}=\frac{\sum_{i=1}^{n-k} f_{n}\left(B_{i}\right)}{\sum_{i=1}^{k} f_{n}\left(A_{i}\right)}
$$

The proof is exactly as the centroid theorem above.
If we choose $f_{n}\left(X_{i}\right)=1$, we get the centroid theorem above.
As an example on pentagons, choose $f_{5}(A)=|C D| \circlearrowleft$, and let us partition into vertex triangles and opposite sides, so that we have for each vertex the points

$$
\begin{aligned}
\mathcal{C}_{f_{5}}(A B E) & =\frac{C D \cdot \boldsymbol{a}+D E \cdot \boldsymbol{b}+B C \cdot \boldsymbol{e}}{C D+D E+B C} \\
\mathcal{C}_{f_{5}}(C D) & =\frac{E A \cdot \boldsymbol{c}+A B \cdot \boldsymbol{d}}{E A+A B}
\end{aligned}
$$

Then the lines $\mathcal{C}_{f_{5}}(A B E) \mathcal{C}_{f_{5}}(C D) \circlearrowleft$ are all concurrent.

4 Special Pentagons

4.1 Cyclic Pentagons

The following theorem is one of many $4 \rightarrow 5$-type theorems:
Theorem 37. If four perpendicular bisectors of the sides of a pentagon are concurrent, then all five perpendicular bisectors are concurrent.

Proof. Suppose the perpendicular bisectors of $A B, B C, C D$, and $D E$ are concurrent in O, and suppose they intersect the sides in M, N, J and K. Then $\triangle A O M \equiv \triangle B O M$ (SAS), so $A O=B O$. With similar arguments we have $A O=B O=C O=D O=E O$, so all points A, B, C, D, E lie on a common circle with centre O. Thus $E A$ is a chord, and its perpendicular bisector passes through the center O.

We begin with a few obvious properties of cyclic pentagons:
Theorem 38. If $A B C D E$ is a cyclic pentagon, then
(1) the perpendicular bisectors of the sides are concurrent,

If $A B C D E$ is also convex, then
(1) $A C \cdot B D=A B \cdot C D+A D \cdot B C \circlearrowleft$,
(2) $A_{1}=B_{2}=C_{3}$

Theorem 39 (The rule of sines). If $A B C D E$ is cyclic, then

$$
\frac{\sin A}{E B}=\frac{\sin B}{A C} \circlearrowleft
$$

Proof. Using rules of sines for triangle $A B E$, we have $\frac{\sin A}{E B}=\frac{\sin E_{3}}{A B}$. Because $A B C D E$ is cyclic, $E_{3}=C_{1}$, thus $\frac{\sin E_{3}}{A B}=\frac{\sin C_{1}}{A B}$, and using rules of sines for $A B C$ we have $\frac{\sin C_{1}}{A B}=\frac{\sin B}{A C}$.

It should be clear that the theorem is easily extended to any cyclic polygon.

Theorem 40.

(1) If a convex pentagon is cyclic, and its diagonal pentagon are both cyclic, the pentagon is regular.
(2) If a convex pentagon and its extended pentagram are both cyclic, then the pentagon is regular.

Theorem 41. If $A B C D E$ is cyclic, and J is the bimedian of quadrangle $B C D E \circlearrowleft$, then the pentagon $J K L M N A B C D E$, and $J K \| A B$.

4.2 Tangent Pentagons

Definition 7. Tangent pentagons are pentagons that can circumscribe a circle.

Theorem 42. If four angular bisectors of a pentagon are concurrent, then all five angular bisectors are concurrent.

Theorem 43. The angular bisectors of a tangent pentagon are concurrent.

Proof. This follows from the fact that the line bisecting the angle of two tangents from a common point at that point passes through the circle.

Theorem 44. If four angular bisectors are concurrent, then all five angular bisectors are concurrent.

Preposition 45. To construct a tangent pentagon with three sides $A B, B C, C D$ given.
(1) Construct the angular bisector b through B.
(2) Construct the angular bisector c through D.
(3) Let $O=b \cap c$.
(4) Reflect the line $A B$ through $A O$, call it x.
(5) Reflect the line $C D$ through $D O$, call it y.
(6) Let $E=x \cap y$.

4.3 Orthocentric Pentagons

Definition 8 (Orthocentric Pentagon). An ortho-centric pentagon is a pentagon whose altitudes are concurrent.

Theorem 46. If four altitudes of a pentagon are concurrent, then all five altitudes are concurrent.

Preposition 47 (Constructing a orthocentric pentagon given five concurrent lines that coincide with the five altitudes, and a vertex). Let the five lines be a, b, c, d and e, concurrent in O.Let the vertex be A.
(1) Draw $A B \perp d$, with B on b.
(2) Draw $B C \perp e$, with C on c.
(3) Draw $C D \perp a$, with D on d.
(4) Draw $D E \perp b$, with E on e.
(5) Connect EA.

Then $A B C D E$ is a orthocentric pentagon.

Proof. All we have to do is prove c is an altitude. Since a, b, d, e are all altitudes concurrent in O by construction, it follows that the fifth altitude must also pass through O. But c already passes through O, so c must be the altitude.

Preposition 48 (Constructing a orthocentric pentagon with three sides given.). Let A, B, C, and D be the four sides given.
(1) Construct $a \perp C D$.
(2) Construct $d \perp A B$.
(3) Let $O=a \cap d$.
(4) Construct $e \perp B C$.
(5) Construct $D E \perp b$, with E on e.

Then $A B C D E$ is orthocentric. The fifth altitude is the line $c=C O$.

Proof. a, b, d, and e are all altitudes of the pentagon by construction, and concurrent in O. The fifth altitude c must then also be concurrent through O, but $C O$ is already a line through C and O, and hence that line must be c, the fifth altitude.

Theorem 49. If $A B C D E$ is orthocentric with centre O and extended pentagram $J K L M N$, than $J O \perp B E \circlearrowleft$.

Proof. $B O$ and $E O$ are altitudes of $\triangle J B E$. They intersect in O, so the third altitude of $\triangle J B E$ must also pass through O. Thus, $J O$ is an altitude, and hence $J O \perp B E$. With the same argument we can prove all $J O \perp$ $B E \circlearrowleft$.

4.4 Mediocentric Pentagons

Definition 9 (Mediocentric). A pentagon is mediocentric when its five medians are concurrent.

Theorem 50. If four medians of a pentagon are concurrent, then all five medians are concurrent.

Proof. The proof is direct using Ceva's Theorem, since for medians $A M=$ $M B \circlearrowleft$.

An alternative vector-algebraic proof (for all polygons with odd vertex counts) is given in [8].

Preposition 51 (To construct a mediocentric pentagon given its five medians (concurrent) and a vertex point on one of the medians). Label the point of concurrence O, and the given vertex A, and the line that it is on a (this is also line $A O$). Label the other lines b, c, d and e such that d lies between a and $b \circlearrowleft$, as shown in the figure. Then
(1) Construct $A M \| b$, with M on d. Construct $M B \| a$ with B on b.
(2) Construct $B N \| c$, with N on e. Construct $N C \| b$ with C on c.
(3) Construct $C J \| d$, with J on a. Construct $J D \| c$ with D on d.
(4) Construct $D K \| e$, with K on b. Construct $K E \| d$ with E on e.

Now connect $A B, B C, C D, D E$ and $E A . A B C D E$ is a mediocentric pentagon.

Proof. $A O B M$ is a parallelogram, so $O M$ bisects $A B$, thus, d connects a vertex D with the midpoint of the opposite site $A B$, so d is a median.

Similarly, by considering paralelellograms $B O C N, C O D K$ and $D O E L$, we find that e, a and b are medians. These medians are concurrent (given), so it follows that the fifth median will also be concurrent. Hence, this pentagon is mediocentric. Since only one line can pass through C and O, it must be the median, so c is in fact the fifth median.

Figure 15: Construction of a mediocentric pentagon.
The same construction works if we label the lines differently. The next figure shows, for example, an arrangement that yields a mediocentric pentagram.

The ideas in the above construction allows us to construct a mediocentric pentagon given three sides. Three sides $(A B C D)$ determine the five medians as follows:
(1) Join A with midpoint of $C D$ to find median a.
(2) Join D with midpoint of $A B$ to find median d.
(3) Let $O=a \cap d$.
(4) $O B$ is median b
(5) $O C$ is median c
(6) Join midpoint of $B C$ to O to find median e.

To construct E so that the pentagon is mediocentric, construct $D K \| e$, with K on b, and finally construct $K E \| d$ with E on e. To complete the pentagon, join $D E$ and $A E$.

Figure 16: Construction of a mediocentric pentagram.
Theorem 52. If $A B C D E$ is a mediocentric pentagon with centroid X, with medians cuting opposite sides in $J \circlearrowleft$, then

$$
\prod_{0} \frac{A X}{X J} \leq(\sqrt{5}-1)^{5}
$$

Theorem 63 give a condition for equality to hold.

4.5 Paradiagonal Pentagons

This section deals with a class of pentagons that has been studied under various names, starting with different definitions. I use the term paradiagonal for the principle term, because, to me, the definition that inspired the name seems to be the most natural, especially since it alludes to the quadrangle analogue parallelogram.
Definition 10 (Paradiagonal Pentagon). A paradiagonal pentagon has sides parallel to opposite diagonals, that is,

$$
A B \| E C \circlearrowleft .
$$

Definition 11 (Affine Regular). A pentagon is affine regular if an affine transformation exists that will transform it into a regular pentagon (or, equivalently, if it is a regular pentagon transformed under a affine transformation).

Definition 12 (Golden Pentagon). A pentagon in which diagonals cut each other in the golden ration, that is

$$
\frac{S C}{A S}=\phi
$$

Definition 13 (Equal Area Pentagon). A pentagon whose vertex triangles all have equal area.

Theorem 53. The following statements are equivalent:
(1) A convex pentagon is paradiagonal.
(2) A convex pentagon is affine regular.
(3) A convex pentagon is golden.
(4) A convex pentagon is equal area.

Proof. (I ommit the label convex here, all the pentagons here are convex).
First, we proof that a paradiagonal pentagon has the properties required by the other definitions. Then we prove the converse of these to show that a pentagon of any of the other definitions is paradiagonal. These taken together proves the theorem.

A paradiagonal pentagon is affine regular

A paradiagonal pentagon is golden
A paradiagonal pentagon is equal area. We have $\mathcal{A}(A B E)=\mathcal{A}(A B C)$, since these triangles lie on a common base $A B$ between parallel lines $A B \| E C$. Similarly, we can show that other adjacent pairs of vertex triangles have equal area. It follows that all vertex triangles have equal area.

An affine regular pentagon is paradiagonal. In a regular pentagon, it is easy to see that all vertex triangles are congruent (SAS), hence all diagonals are equal in length. From this it also follows that all edge triangles are congruent. Triangles $B C E$ and $E D B$ are congruent, and hence have equals area. But they also share a base $(B E)$, so $B E \| C D$. Similarly, we can prove for other edge and diagonal pairrs, so $B E \| C D \circlearrowleft$.

Affine transformations preserve parallelism, so $B E \| C D \circlearrowleft$ for a regular pentagon transformed with any affine transformation; thus all affine regular pentagons are paradiagonal.
A golden pentagon is paradiagonal. Through S, construct $S X \| A D$ with X on $D C$. From this, $\frac{A S}{S C}=\frac{D X}{X C}$. But $\frac{D Q}{Q A}=\frac{A S}{S C}$, thus $\frac{D X}{X C}=\frac{D Q}{Q A}$, thus $X Q \| C A$. Hence

Theorem 54. If, in a pentagon, four diagonals are parallel to opposite sides, then all five diagonals are parallel to opposite sides.

Proof. Suppose $B C\|A D, C D\| B E, C D\|B E, C D\| B E$. Then we have $\mathcal{A}(A B C)=\mathcal{A}(B C D), \mathcal{A}(B C D)=\mathcal{A}(C D E), \mathcal{A}(C D E)=\mathcal{A}(D E A)$, $\mathcal{A}(D E A)=\mathcal{A}(E A B)$. So $\mathcal{A}(A B C)=\mathcal{A}(E A B)$, which means $A B \| E C$.

We may think that if four vertex triangles have equal area, all four vertex triangles have equal area. However, this is not the case. Here is a way to construct a counter example:
(1) Choose three points in general position, A, B, and C.
(2) Construct line d parallel to $A B$ through C.
(3) Mark a moveable point E on d.
(4) Construct a line e parallel to $B C$ through A.
(5) Construct a line parallel to $B E$ through C, and let it intersect e in D.

From triangles with the same bases and lying between the same sets of parallel lines, it follows that four vertex triangles have equal area:

$$
\mathcal{A}(\triangle E A B)=\mathcal{A}(\triangle A B C)=\mathcal{A}(\triangle B C D)=\mathcal{A}(\triangle C D E)
$$

regardless of where we position E on d (to keep things simple, let's always keep it on the opposite side of e from C). It is easy to see that we can make the area of $\triangle D E A$ anything we want, from zero to infinity, without changing the areas of any of the other vertex triangles.

This construction also illustrates that we cannot weaken the theorem above to three diagonals parallel to opposite sides, as three sides parallel to opposite diagonals do not imply the other sides are parallel to opposite diagonals.

A similar construction shows that if the four edge triangles have equal area, it does not follow that all five edge triagnles have the same area:
(1) Choose three points in general position, A, B, and D.
(2) Construct line c parallel to $D B$ through A.
(3) Mark a movable point E on c.
(4) Construct a line e parallel to $A D$ through B.
(5) Construct a line parallel to $B E$, and let it intersect e in C.

Using triangles on equal bases between the same parallel lines, we have

$$
\mathcal{A}(\triangle A B D)=\mathcal{A}(\triangle B C E)=\mathcal{A}(\triangle C D A)=\mathcal{A}(\triangle D E B),
$$

but by moving E on c we can make $\triangle E A C$ have any area we want, from zero to infinity.

Figure 17: Similar triangles of a paradiagonal pentagon
Theorem 55. If $A B C D E$ is a paradiagonal pentagon, then
(1) $E R D \equiv S B C \sim A R S \sim A D C$

Figure 18: Triangles with equal area
(2) $\mathcal{A}(A E R)=\mathcal{A}(A S B)$
(3) $\mathcal{A}(A B C)=\mathcal{A}(B C D) \circlearrowleft$
(4) $\mathcal{A}(A R S)=\mathcal{A}(B S T) \circlearrowleft$.
(5) $\mathcal{A}(A C D)=\mathcal{A}(B D E) \circlearrowleft$.

Proof.

For a discussion on equal-area polygons (polygons that have vertex triangles $P_{1} P_{2} P_{3} \circlearrowleft P_{1} \cdots P_{n}$ of equal area), see [5].
Theorem 56 (Golden ratio). A paradiagonal pentagon satisfies

$$
\frac{S C}{A S}=\frac{A C}{S C}=\frac{A C}{E D}=\phi \circlearrowleft
$$

Proof. This ratio theorem is well-known for regular pentagons. Since affine maps preserve ratio's, the golden ratio relationship must also be satisfied for affine regular pentagons, i.e. it must hold for paradiagonal pentagons.

Because of this theorem, paradiagonal pentagons are also called golden pentagons. It also gives us a simple method to construct a paradiogonal pentagon given three adjacent vertices.

Preposition 57 (To construct a paradiagonal pentagon given three adjacent vertices). Three adjacent vertices, A, B, and C are given.
(1) Connect $A B, B C$.
(2) Complete parallelogram $A B C Q$.
(3) On $C Q$, mark P such that $Q P / P C=P C / Q C$. One way to do that is as follows [?]:
(a) Draw $Q X \perp Q C$, with $Q X=Q C / 2$.
(b) Join $X C$.
(c) Mark Y on $X C$ such that $X Y=X Q$.
(d) Mark P on $C Q$ such that $C P=C X$.
(4) Let $B P$ extended meet $A Q$ extended in D.
(5) Draw $A E \| B D$, with E on $C Q$ extended.
(6) Join $C D$ and $D E$.

The pentagon $A B C D E$ is a paradiagonal pentagon.

Proof. We need to prove that $C D \| B E$ and $A C \| E D$. We do this by using equal area arguments. $C P / P Q=C P / C Q=\phi$, but $C Q=B A$ (parallelogram $A B C Q$), thus $C P / B A$.

Figure 19: Construction of a paradiagonal pentagon, given three vertices A, B, and C.

Theorem 58. The diagonal pentagon $P Q R S T$ of a paradiagonal pentagon $A B C D E$ is similar to it:

$$
A B C D E \sim P Q R S T
$$

Theorem 59. Let $A B C D E$ be a paradiagonal pentagon, then the medial pentagon JKLMN (where J bisect $C D \circlearrowleft$) is similar to the paradiagonal pentagon:

$$
J K L M N \sim P Q R S T
$$

In the more general case, when $A B C D E$ is an arbitrary pentagon, we have $\angle A=\angle J \circlearrowleft$, but this does not imply the figures are similar.

Theorem 60. The lines AP \circlearrowleft of a paradiagonal pentagon are concurrent, and they bisect opposite sides $C D \circlearrowleft$.

Proof. We show that AP, BQ and DS are concurrent.
Let $X=A B \cap D S$. Then, using Ceva's theorem in $\triangle D A B$, we have

$$
\frac{A X}{X B} \cdot \frac{B T}{T D} \cdot \frac{D R}{R A}=1
$$

so that

$$
\frac{A X}{X B}=\frac{T D}{B T} \cdot \frac{R A}{D R} .
$$

Thus, using the above and the golden ratio theorem,

$$
\begin{aligned}
\frac{A X}{X B} \cdot \frac{B P}{P D} \cdot \frac{D Q}{D A} & =\frac{T D}{B T} \cdot \frac{R A}{D R} \cdot \frac{B P}{P D} \cdot \frac{D Q}{D A} \\
& =\phi \cdot \frac{1}{\phi} \cdot \phi \cdot \frac{1}{\phi} \\
& =1
\end{aligned}
$$

So the triplet of ratios satisfies Ceva's formula, and hence $D X=D S, A P$ and $B Q$ are concurrent. We can repeat the proof for other triplets, and eventually establish that all five lines $A P \circlearrowleft$ are concurrent.

To prove that the lines $A P \circlearrowleft$ bisect opposites sides, let $J=A P \cap C D$.
Now, we have the following relationships:
(1) $\frac{D R}{R D}=\phi($ Theorem 56)
(2) $\frac{A S}{S C}=1 / \phi$ (Theorem 56)
(3) $\frac{D R}{R A} \cdot \frac{A S}{S C} \cdot \frac{C J}{J D}=1$ (Ceva's Theorem, since $A J, D S, C R$ are concurrent)

Combining these give $\frac{C J}{J D}=1$, thus $C J=J D$. Similar arguments prove $C J=J D \circlearrowleft$.

Corollary 61. If a pentagon is paradiagonal, it is also mediocentric.
Theorem 62 (Congruence SAS). if two sides and the enclosed angle of two paradiagonal pentagons are equal, then the two pentagons are congruent.

Theorem 63.A. Let the medians cut opposite sides in $J \circlearrowleft$, and let $A J \circlearrowleft$ all intersect in X. Then

$$
\prod_{\circlearrowleft} \frac{A X}{X J}=(\sqrt{5}-1)^{5}
$$

Theorem 63.B. If $A B C D E$ is a mediocentric pentagon with centroid X, and

$$
\prod_{0} \frac{A X}{X J}=(\sqrt{5}-1)^{5}
$$

then the pentagon is paradiogonal.

4.6 Equilateral Pentagons

Theorem 64. The two sub angles on the base of vertex triangles of a pentagon are equal, that is

$$
A_{3}=C_{1}
$$

Proof. The proof follows immediately from the fact that $A B C \circlearrowleft$ are isosceles triangles, which have equal base angles $A_{3}=C_{1}$.

Theorem 65 (Ptolomy's Formula for Equilateral Pentagons). Let $R_{A B C}$ be the radius of the circumcircle of triangle $A B C$. Then, for any cyclic pentagon $A B C D E$

$$
\frac{1}{R_{A B C}} \cdot \frac{1}{R_{A D E}}+\frac{1}{R_{A B E}} \cdot \frac{1}{R_{A C D}}=\frac{1}{R_{A B D}} \cdot \frac{1}{R_{A C E}} \circlearrowleft
$$

Figure 20: Triangles with equal area

4.7 Equiangular Pentagons

The area of a convex equiangular pentagon is a function of the lengths of the sides alone, since we can express the c_{1} and c_{2} of Gauss's Formula as

$$
\begin{aligned}
& c_{1}=\frac{\sin 108^{\circ}}{2} \sum_{\circlearrowleft} A B \cdot A C \\
& c_{2}=\frac{\sin ^{2} 108^{\circ}}{4} \sum_{\circlearrowleft} A B \cdot B C^{2} \cdot C D
\end{aligned}
$$

4.8 Brocard Pentagons

Definition 14. A Brocard Point of a pentagon is a point X such that all angles AXB \circlearrowleft are equal. The angle is called the Brocard angle. A pentagon with a Brocard point is called a Brocard pentagon.
Theorem 66. If a pentagon has a Brocard point, it is unique.

Proof. Suppose there are two Brocard points, X and X^{\prime}, with Brocard angles ω and ω^{\prime}. If $\omega=\omega^{\prime}$, then X^{\prime} must be the intersection of $A X$ and $B X$, and hence $X=X^{\prime}$. Suppose then that $\omega \neq \omega^{\prime}$. If $X \neq X^{\prime}$, then in must lie in one of the triangles $\triangle A B X \circlearrowleft$. If it lies, for instance, in triangle $A B X$, then $\omega=\angle X A B>\angle X^{\prime} A B=\omega^{\prime}$. But also, $\omega=\angle X B C<\angle X^{\prime} B C=\omega^{\prime}$. We thus have both $\omega>\omega^{\prime}$ and $\omega<\omega^{\prime}$, which cannot be. Similar contradictions are obtained if X lies in any of the triangles $A B X \quad \circlearrowleft$, and hence $\omega \neq \omega^{\prime}$ cannot be true. Thus $\omega=\omega^{\prime}$, and hence $X=X^{\prime}$.

Figure 21: If a pentagon has a Brocard point, it is unique.
Theorem 67. In a Brocard pentagon, $A B \circlearrowleft$ is tangent to $\odot X B C$.
Theorem 68. Let $A B C D E$ be a Brocard pentagon with Brocard point X, and $A^{\prime} \neq X$ be any point on $\odot E A X$ inside $A B C D E$. Join $E A^{\prime}$, and then let $B^{\prime}=A A^{\prime} \cap \odot A B X, C^{\prime}=B B^{\prime} \cap \odot B C X, D^{\prime}=C C^{\prime} \cap \odot C D X$, and $E^{\prime}=D D^{\prime} \cap \odot D E X$. Then:
(1) $E^{\prime}=E A^{\prime} \cap \odot D E X$
(2) $A B C D E \sim A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$
(3) $A^{\prime} E A=B^{\prime} A B \circlearrowleft$
(4) X^{\prime} is also the Borcard point of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$

Figure 22:

Proof. Theorem 26 implies parts 1 and 2.
To prove part 3, $A B$ is tangent to $\odot E A X$, and $A A^{\prime}$ is a chord of $\odot E A X$, so $\angle A^{\prime} A B=\angle A E A^{\prime}$, and (similarly \circlearrowleft).

I only prove the part 4 in the case where A^{\prime} is in $\triangle A B X$.
Extend $X A$ to meet $\odot A B X$ in $A^{\prime \prime}$. Then,

- $\angle B^{\prime} A B=\angle A^{\prime} E A$ (already proven, part 3 of this theorem).
- $\angle A^{\prime} E A=\angle A^{\prime} X A$ (angles in the same segment in circle $E A X$ on chord $A^{\prime} A$).
- $\angle A X A^{\prime}=\angle A X A^{\prime \prime}=\angle A B A^{\prime \prime}$ (angles in the same segment in circle $A B X$ on chord $\left.A A^{\prime \prime}\right)$.

Thus $\angle B^{\prime} A B=\angle A B A^{\prime \prime}$, and hence $A B^{\prime} \| A^{\prime \prime} B$. So,

- $\angle X A^{\prime} B^{\prime}=\angle X A^{\prime \prime} B$ (alternate angles $A B^{\prime} \| A^{\prime \prime} B$).
- $\angle X A^{\prime \prime} B=\angle X A B$ (angles in the same segment in circle $A B X$ on chord $X B)$.

Thus $\angle X A^{\prime} B^{\prime}=\angle X A B$.
Similarly, we can show $\angle X A^{\prime} B^{\prime}=\angle X A B \circlearrowleft$. But $\angle X A B \circlearrowleft$ are all equal to the Brocard angle, so $X A^{\prime} B^{\prime} \circlearrowleft$ must all be equal to the Brocard angle. Thus, X is also the Brocard point of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

These ideas can be extended to general polygons. See [1].

4.9 Classification By Subangles

Theorem 69 (Subangle Classification). If the subangles of a pentagon satisfies certain relationships, the pentagon is special.
(1) If $A_{2}=B_{3}=E_{1} \circlearrowleft$, the pentagon is cyclic.
(2) If $A_{2}=C_{1}=D_{3} \circlearrowleft$, the pentagon is paradiagonal.
(3) If $A_{1}=A_{2}=A_{3} \circlearrowleft$, the pentagon is regular.
(4) If $A_{3}=C_{1} \circlearrowleft$, the pentagon is equilateral.

Quadrilaterals	Pentagon
Parallelograms	Mediocentric
Kites	Orthocentric
Cyclic with two opposite angles right angles	Tangent

References

[1] Ben-Israel, A; Foldes, S. Stability of Brocard points of polygons
[2] Clawson, J.W.; A chain of circles associated with the 5-line.
[3] Grünbaum, B. The Grunert Point of Pentagons.
[4] Grünbaum, B. Selfintersections of Polygons.
[5] Harel, G.; Rabin, J.M. Polygons Whose Vertex Triangles Have Equal Area.
[6] Hitzer, E.M.S. Conic Sections Through Five Points: Classical, Projective, Conformal
[7] Mammana, M.F., Micale; B., Pennisi, M. On the Centroids of polygons and Polyhedra.
[8] Steinberger, J. P.Polygons with concurrent medians
[9] Svrtan, D.; Veljan, D.; Volenec, V. Geometry of pentagons: from Gauss to Robbins.

